298
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Internal carburization and scale formation on austenitic steels in supercritical carbon dioxide

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 308-317 | Received 19 Apr 2023, Accepted 25 May 2023, Published online: 08 Jun 2023

References

  • Dostal V, Hejzlar P, Driscoll MJ. The supercritical carbon dioxide power cycle: comparison to other advanced power cycles. Nucl Technol. 2006;154(3):283–301.
  • Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable And Sustainable Energy Rev. 2010;14(9):3059–3067.
  • Iverson BD, Conboy TM, Pasch JJ, et al. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl Energy. 2013;111:957–970.
  • Allam RJ, Palmer MR, Brown GW Jr, et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide. Energy Procedia. 2013;37:1135–1149.
  • Allam R, Martin S, Forrest B, et al. Demonstration of the Allam cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia. 2017;114:5948–5966.
  • Feher EG. The supercritical thermodynamic power cycle. Energy Convers. 1968;8(2):85–90.
  • Olivares RI, Young DJ, Marvig P, et al. Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at high temperature. Oxid Met. 2015;84(5–6):585–606.
  • Pint BA, Keiser JR. Initial assessment of Ni-Base Alloy Performance in 0.1 MPa and supercritical CO2. JOM. 2015;67(11):2615–2620.
  • Mahaffey J, Adam D, Brittan A, et al. Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions. Oxid Met. 2016;86(5–6):567–580.
  • Pint BA, Brese RG, Keiser JR. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750°C. Mater Corros. 2017;68(2):151–158.
  • Oleksak RP, Tylczak JH, Carney CS, et al. High-Temperature oxidation of commercial alloys in supercritical CO2 and related power cycle environments. JOM. 2018;70(8):1527–1534.
  • Olivares RI, Young DJ, Nguyen TD, et al. Resistance of high-nickel, heat-resisting alloys to air and to supercritical CO2 at high temperatures. Oxid Met. 2018;90(1–2):1–25.
  • Pint BA, Lehmusto J, Lance MJ, et al. Effect of pressure and impurities on oxidation in supercritical CO2. Mater Corros. 2019;70(8):1400–1409.
  • Pint BA, Pillai R, Lance MJ, et al. Effect of pressure and thermal cycling on long-term oxidation in CO2 and supercritical CO2. Oxid Met. 2020;94(5–6):505–526.
  • McCoy HE. Type 304 stainless steel vs flowing CO2 at atmospheric pressure and 1100-1800F. Corrosion. 1965;21(3):84–94.
  • Martin WR, Weir JR. Influence of chromium content on carburization of Chromium-Nickel-Iron Alloys in carbon dioxide. J Nucl Mater. 1965;16(1):19–24.
  • Fujii CT, Meussner RA. Carburization of Fe-Cr Alloys during oxidation in dry carbon dioxide. J Electrochem Soc. 1967;114(5):435–442.
  • Giggins CS, Pettit FS. Corrosion of metals and alloys in mixed gas environments at elevated temperatures oxid. Oxid Met. 1980;14(5):363–413.
  • Meier GH, Coons WC, Perkins RA. Corrosion of Iron-, Nickel- and Cobalt-Base alloys in atmospheres containing carbon and oxygen. Oxid Met. 1982;17(3–4):235–262.
  • Dodds P. Developing new reactors: learning the lessons of the past. Nuclear Energy. 2004;43(6):331–336.
  • Rowlands PC, Garrett JCP, Popple LA, et al. The oxidation performance of Magnox and advanced gas-cooled reactor steels in high pressure CO2. Nuclear Energy. 1986;25:267–275.
  • Gong Y, Young DJ, Kontis P, et al. On the breakaway oxidation of Fe9Cr1Mo steel in high pressure CO2. Acta Mater. 2017;130:361–374.
  • Sarrade S, Férona D, Rouillard F, et al. Overview on corrosion in supercritical fluids. J Supercritical Fluids. 2017;120:335–344.
  • Shingledecker JP, Pint BA, Sabau AS, et al. Managing steam-side oxidation and exfoliation in USC boiler tubes. Adv Mater Process. 2013;171(1):23–25.
  • Tan L, Anderson M, Taylor D, et al. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros Sci. 2011;53(10):3273–3280.
  • Furukawa T, Inagaki Y, Aritomi M. Compatibility of FBR structural materials with supercritical carbon dioxide. Prog Nucl Energy. 2011;53(7):1050–1055.
  • Cao G, Firouzdor V, Sridharan K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corros Sci. 2012;60:246–255.
  • Young DJ, Zhang J, Geers C, et al. Recent advances in understanding metal dusting: a review. Mater Corros. 2011;62(1):7–28.
  • Gheno T, Monceau D, Young DJ. Kinetics of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide. Corros Sci. 2013;77:246–256.
  • Pint BA, Pillai R, Keiser JR Compatibility of steels in supercritical CO2 at 450°-650°C. NACE Paper C2021-16724, Houston, TX, 2021.
  • Pint BA, Pillai R, Keiser JR Effect of supercritical CO2 on steel ductility at 450°-650°C. ASME Paper #GT2021-59383, for Turbo Expo 2021 Virtual Conference and Exhibition, 2021.
  • Pint BA, Lance MJ, Pillai R, et al. Compatibility of steels at 450°-650°C in supercritical CO2 with O2 and H2O additions. AMPP Paper C2022-18018, Houston, TX, 2022.
  • Lance MJ, Leonard DN, Pint BA The use of glow discharge optical emission spectroscopy to quantify internal carburization in supercritical CO2. in Proceedings of the 6th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, March 2018, Paper #117.
  • Su YF, Stack PIM, Stephens CJ, et al. Quantifying high temperature corrosion. NACE Paper C2021-16805, Houston, TX, 2021.
  • Pieraggi B. Calculations of parabolic reaction rate constants. Oxid Met. 1987;27(3–4):177–185.
  • Rouillard F, Charton F, Moine G. Corrosion behavior of different metallic materials in supercritical carbon dioxide at 550°C and 250 bars. Corrosion. 2011;67(9):095001.
  • Pint BA, Pearson SR, De Las Casas Aranda R, et al. Water chemistry and pressure effects on steam oxidation of ferritic and austenitic steels. In: Shingledecker J Takeyama M, editors Proceedings of the joint EPRI – 123HiMAT international conference on advances in high temperature materials. Materials Park, OH: ASM International; 2019. pp. 939–947.
  • Saunders SRJ, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review. Prog Mater Sci. 2008;53(5):775–837.
  • Young DJ, Nguyen TD, Felfer P, et al. Penetration of protective chromia scales by carbon. Scripta Materialia. 2014;77:29–32.
  • Pint BA, Unocic KA. The effect of CO2 pressure on chromia scale microstructure at 750°C. JOM. 2018;70(8):1511–1519.
  • Pint BA, Unocic KA, Brese RG, et al. Characterization of chromia scales formed in supercritical carbon dioxide. Mater High Temp. 2017;35(1–3):39–49.
  • Chyrkin A, Pillai R, Ackermann H, et al. Modeling carbide dissolution in alloy 602 CA during high temperature oxidation. Corros Sci. 2015;96:32–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.