63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of cyclic overload on deformation, crack growth behavior and crack initiation/growth lives of a C(T) specimen for 12Cr steel under creep-fatigue condition

ORCID Icon, &
Pages 265-273 | Received 30 May 2023, Accepted 09 Jan 2024, Published online: 16 Jan 2024

References

  • Yoon KB, Saxena A, McDowell DL. Effect of cyclic overload on the crack growth behavior during hold period at elevated temperature. Int J Fract. 1993;59(3):199–211. doi: 10.1007/BF02555183
  • Koterazawa R, Nosho T. Acceleration of crack growth under intermittent overloading at elevated temperature. Fatigue Fract Engng Mater Struct. 1992;15(5):507–518. doi: 10.1111/j.1460-2695.1992.tb01290.x
  • Gustafsson D, Lundstrom E. High temperature fatigue crack growth behaviour of inconel 718 under hold time and overload conditions. Int J Fatigue. 2013;48:178–186. doi: 10.1016/j.ijfatigue.2012.10.018
  • Saarimaki J, Moverare J, Eriksson R, et al. Influence of overloads on dwell time fatigue crack growth in Inconel718. Mater Sci Eng A. 2014;612:398–405. doi: 10.1016/j.msea.2014.06.068
  • Sugiura R, Yokobori Jr AT, Arai M, et al. Effect of embrittlement on creep crack growth rate for W-added 12Cr Ferritic Heat Resistant Steel Concerning Multi-Axial Stress and aging. Strength Fract Complex. 2006;4:225–235.
  • Sugiura R, Yokobori, Jr. AT, Tabuchi M, et al. Characterization of structural embrittlement of creep crack growth for W-Added 12%Cr ferritic heat-resistant steel related to the multi axial stress. J Eng Mater Technol. 2009;131(1):011004-1-011004–9. doi: 10.1115/1.3026544
  • Shirai Y, Yokobori, Jr. AT, Sugiura R, et al. The effect of load frequency on the temperature dependence of fracture life of notched specimens for 9-12Cr steel under creep-fatigue conditions”, Proceedings of the ASME 2015 Pressure Vessels and Piping Conference, Boston, Massachusetts, USA. 2015. PVP2015–45510.
  • Ozeki G, Yokobori, Jr AT, Kobayashi D. Effect of overload on creep deformation, crack initiation and growth behaviors of a C(T) specimen for 12Cr steel. Eng Fract Mech. 2022;246:108313. doi: 10.1016/j.engfracmech.2022.108313
  • ASTM-E1457-19. Standard test method of measurement of creep crack growth times in metals. 2019;1–29. doi:10.1520/E1457-19E01.
  • Johnson HH. Calibrating the electric potential method for studying slow crack growth. Materi Res And Stand. 1965;5(9):442–445.
  • Schwalbe KH, Hellmann D. Application of the electric potential method to crack length measurements using Johnson’s formula. J Test Eval. 1981;9(3):218–221. doi: 10.1520/JTE11560J
  • Yokobori, Jr AT, Kuriyama T, Kaji Y, et al. The effect of the stress rate in a cycle and stress hold time respectively on fracture life under high temperature creep, fatigue and creep-fatigue multiplication condition. J Japanese Soci Stren Fract Mater. 1986;21(1): 25–32, in Japanese.
  • Elber W. Fatigue crack closure under cyclic tension. Eng Fract Mech. 1970;2(1):37–45. doi: 10.1016/0013-7944(70)90028-7
  • Bhandari S, Potirniche GP, Ramirez J. An investigation into the influence of variable amplitude creep-fatigue loading on plasticity-induced crack closure. Eng Fract Mech. 2023;293:109668. doi: 10.1016/j.engfracmech.2023.109668
  • Yokobori, Jr A.T, Kaji Y, Kuriyama T. Damage progression behavior under high temperature creep and fatigue conditions, ICF10, Honolulu. Elsevier Science; 2001.
  • Kobayashi D, Miyabe M, Achiwa M, et al. Analysis of damage behavior based on EBSD method and the law of fracture life under creep-fatigue conditions for the polycrystalline nickel-base superalloy. Strength Fract Complex. 2015;9(1):95–109. doi: 10.3233/SFC-150182
  • Ozeki G, Yokobori, Jr, A.T, Sugiura R, et al. Law of fracture life under creep-fatigue interactive conditions for Ni-base directionally solidified superalloy based on non-equilibrium science (the effect of stress holding time). Strength Fract Complex. 2015;9(1):111–123. doi: 10.3233/SFC-150183
  • Yokobori, Jr. A.T, Abe K, Tsukidate H, et al. Micro mechanics based on vacancy diffusion coupled with damage mechanics related to creep deformation and prediction of creep fracture life. Mater High Temp. 2011;28(2):126–136. doi: 10.1179/096034011X13061599631976

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.