165
Views
11
CrossRef citations to date
0
Altmetric
research

An extended method for comparing watertightness tests for facades

, , , , &
Pages 706-721 | Published online: 20 Aug 2013

References

  • American Architectural Manufacturers Association (AAMA). (2005). AAMA 501.1. Standard test method for water penetration of exterior windows, curtain walls and doors using dynamic pressure. Schaumburg, IL: AAMA.
  • American Society for Testing and Materials (ASTM) (2009a). ASTM E331-00. Standard test method for water penetration of exterior windows, skylights, doors, and curtain walls by uniform static air pressure difference. West Conshohocken, PA: ASTM.
  • American Society for Testing and Materials (ASTM) (2009b). ASTM E547-00. Standard test method for water penetration of exterior windows, skylights, doors, and curtain walls by cyclic static air pressure difference. West Conshohocken, PA: ASTM.
  • Australian and New Zealand Standards Institution (AS/NZS). (2008). AS/NZS 4284. Testing of building façades. Sydney: AS/NZS.
  • Blocken, B., Abuku, M., Nore, K., Briggen, P. M., Schellen, H. L., Thue, J. V., & … Carmeliet, J. (2011). Intercomparison of wind-driven rain deposition models based on two case studies with full-scale measurements. Journal of Wind Engineering and Industrial Aerodynamics, 99, 448–459 doi: 10.1016/j.jweia.2010.11.004 doi: 10.1016/j.jweia.2010.11.004
  • Blocken, B., & Carmeliet, J. (2004). A review of wind-driven rain research in building science. Journal of Wind Engineering and Industrial Aerodynamics, 92, 1079–1130. doi: 10.1016/j.jweia.2004.06.003 doi: 10.1016/j.jweia.2004.06.003
  • Blocken, B., Derome, D., & Carmeliet, J. (2013). Rainwater runoff from building facades: a review. Building and Environment, 60, 339–361. doi: 10.1016/j.buildenv.2012.10.008 doi: 10.1016/j.buildenv.2012.10.008
  • Bornehag, C. G., Blomquist, G., Gyntelberg, F., Järvholm, B., Malmberg, P., Nordvall, L., & … Sundell, J. (2001). Dampness in buildings and health. Indoor Air, 11, 72–86. doi: 10.1034/j.1600-0668.2001.110202.x doi: 10.1034/j.1600-0668.2001.110202.x
  • Boyd, D. W. (1963). Driving rain map of Canada (Technical Note No. 398). OttawaON: National Research Council.
  • Chand, I., Bhargava, P. K. (2002). Estimation of driving rain index for India. Building and Environment, 37, 549–554. doi: 10.1016/S0360-1323(01)00057-9 doi: 10.1016/S0360-1323(01)00057-9
  • Choi, E. C. C. (1991). Numerical simulation of wind-driven rain falling onto a 2-D building. Proceedings of Asia Pacific Conference on Computational Mechanics (1721–1728). Hong Kong, China.
  • Choi, E. C. C. (1993). Simulation of wind-driven rain around a building. Journal of Wind Engineering and Industrial Aerodynamics, 46–47, 721–729. doi: 10.1016/0167-6105(93)90342-L doi: 10.1016/0167-6105(93)90342-L
  • Choi, E. C. C. (1994a). Determination of wind driven-rain intensity on building faces. Journal of Wind Engineering and Industrial Aerodynamics, 51, 55–69. doi: 10.1016/0167-6105(94)90077-9 doi: 10.1016/0167-6105(94)90077-9
  • Choi, E. C. C. (1994b). Parameters affecting the intensity of wind-driven rain on the front face of a building. Journal of Wind Engineering and Industrial Aerodynamics, 53, 1–17. doi: 10.1016/0167-6105(94)90015-9 doi: 10.1016/0167-6105(94)90015-9
  • Choi, E. C. C. (1998). Criteria for water penetration testing. In Kudder R. J. & Erdly J. L. (Eds.), Water leakage through building facades (3–16), (ASTM STP 1314). West Conshohocken, PA: American Society for Testing and Materials.
  • Cornick, S. M., & Lacasse, M. A. (2005). A review of climate loads relevant to assessing the watertightness performance of walls, windows, and wall–window interfaces. Journal of ASTM International, 2(10), 1–16. doi: 10.1520/JAI12505 doi: 10.1520/JAI12505
  • Cornick, S. M., & Lacasse, M. A. (2009). An investigation of climate loads on building façades for selected locations in the US. Journal of ASTM International, 6(2), 1–17. doi: 10.1520/JAI101210 doi: 10.1520/JAI101210
  • Del Coz, J. J., Rabanal, F. P., García, P. J., Domínguez, J., Rodríguez, B., & Pérez, J. M. (2013). Hygrothermal properties of lightweight concrete: Experiments and numerical fitting study. Construction and Building Materials, 40, 543–555. doi: 10.1016/j.conbuildmat.2012.11.045 doi: 10.1016/j.conbuildmat.2012.11.045
  • European Committee for Standardization (CEN). (2000). EN 12155. Curtain walling. Watertightness. Laboratory test under static pressure. Brussels: CEN.
  • European Committee for Standardization (CEN). (2001). EN 12865. Hygrothermal performance of building components and building elements. Determination of the resistance of external wall systems to driving rain under pulsating air pressure. Brussels: CEN.
  • Giarma, D., & Aravantinos, D. (2011). Estimation of building components' exposure to moisture in Greece based on wind, rainfall and other climatic data. Journal of Wind Engineering and Industrial Aerodynamics, 99(2–3), 91–102. doi: 10.1016/j.jweia.2010.12.001 doi: 10.1016/j.jweia.2010.12.001
  • Gumbel, E. J. (1958). Statistics of extremes. New York, NY: Columbia University Press.
  • Hoppestad, S. (1955). Slagregn i Norge [Driving rain in Norway] (Report No. 13 NBI). Oslo: Norwegian Building Research Institute.
  • International Organisation for Standardisation (ISO). (2009). ISO 15927-3. Hygrothermal performance of buildings. Calculation and presentation of climatic data. Part 3: Calculation of a driving rain index for vertical surfaces from hourly wind and rain data. Geneva: ISO.
  • Lacasse, M. A., O'Connor, T., Nunes, S. C., & Beaulieu, P. (2003). Report from Task 6 of MEWS Project: Experimental assessment of water penetration and entry into wood-frame wall specimens – Final report (Research Report No. 133). Ottawa: Institute for Research in Construction, National Research Council Canada.
  • Lacy, R. E., & Shellard, H. C. (1962). An index of driving rain. Meteorological Magazine, 91(1080), 177–184.
  • Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1975). Hydrology for engineers (2nd ed.). New York, NY: McGraw-Hill.
  • Pérez, J. M., Domínguez, J., Rodríguez, B., del Coz, J. J., & Cano, E. (2012). Estimation of the exposure to moisture in Spain from daily wind and rain data. Building and Environment, 57, 259–270. doi: 10.1016/j.buildenv.2012.05.010 doi: 10.1016/j.buildenv.2012.05.010
  • Pérez, J. M., Domínguez, J., Rodríguez, B., del Coz, J. J., & Cano, E. (2013a). Combined use of wind-driven rain and wind pressure to define water penetration risk into building façades: the Spanish case. Building and Environment, 64, 46–56. doi: 10.1016/j.buildenv.2013.03.004 doi: 10.1016/j.buildenv.2013.03.004
  • Pérez, J. M., Domínguez, J., Rodríguez, B., del Coz, J. J., & Cano, E. (2013b, in press). A new method for determining the water tightness of building facades. Building Research & Information, 41(4), 401–414. doi: 10.1080/09613218.2013.774936
  • Ray, M., Rogers, A. L., & McGowan, J. G. (2006). Analysis of wind shear models and trends in different terrains, American Wind Energy Association Windpower 2005 Conference, Pittsburgh, PA, US.
  • Sahal, N. (2006). Proposed approach for defining climate regions for Turkey based on annual driving rain index and heating degree-days for building envelope design. Building and Environment, 41, 520–526. doi: 10.1016/j.buildenv.2005.07.004 doi: 10.1016/j.buildenv.2005.07.004
  • Sahal, N., & Lacasse, M. A. (2004). Experimental assessment of water penetration and entry into siding-clad wall specimen (Internal Report No. 862). Ottawa: Institute for Research in Construction, National Research Council Canada.
  • Sahal, N., & Lacasse, M. A. (2008). Proposed method for calculating water penetration test parameters of wall assemblies as applied to Istanbul, Turkey. Building and Environment, 43, 1250–1260. doi: 10.1016/j.buildenv.2007.03.009 doi: 10.1016/j.buildenv.2007.03.009
  • Sanders, C. (1996). Heat, air and moisture transfer in insulated envelope parts: environmental conditions. In International Energy Agency, Annex 24, Final report (Vol. 2). Leuven: International Energy Agency (IEA).
  • Sauer, P. (1987). An annual driving rain index for China. Building and Environment, 22, 239–240. doi: 10.1016/0360-1323(87)90016-3 doi: 10.1016/0360-1323(87)90016-3
  • Straube, J. F., & Burnett, E. F. P. (2000). Simplified prediction of driving rain on buildings. In Proceeding of the International Building Physics Conference. (pp. 375–382). Eindhoven, the Netherlands.
  • Tang, W., Davidson, C. I., Finger, S., & Vance, K. (2004). Erosion of limestone building surfaces caused by wind-driven rain. 1. Field measurements. Atmospheric Environment, 38, 5589–5599. doi: 10.1016/j.atmosenv.2004.06.030 doi: 10.1016/j.atmosenv.2004.06.030
  • Van den Bossche, N., Lacasse, M. A., & Janssens, A (2013a). A uniform methodology to establish test parameters for watertightness testing. Part I: A critical review. Building and Environment. (Vol. 63, pp. 145–156. doi: 10.1016/j.buildenv.2012.12.003
  • Van den Bossche, N., Lacasse, M. A., & Janssens, A (2013b). A uniform methodology to establish test parameters for watertightness testing. Part II: Pareto front analysis on co-occurring rain and wind. Building and Environment. (Vol. 63, pp. 157–167). doi: 10.1016/j.buildenv.2012.12.019
  • Welsh, R. E., Skinner, W. R., & Morris, R. J. (1989). A climatology of driving rain pressure for Canada (Climate and Atmospheric Research Directorate Draft Report). Gatineau: Environment Canada, Atmospheric Environment Service.
  • World Health Organisation (WHO). (2011). Environmental burden of disease associated with inadequate housing. Methods for quantifying health impacts of selected housing risks in the WHO European Region. Copenhagen: WHO.
  • World Meteorological Organisation (WMO). (2008). Guide to meteorological instruments and methods of observation (WMO No. 8). Geneva: WMO.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.