293
Views
10
CrossRef citations to date
0
Altmetric
research

Assessment of water penetration risk in building facades throughout Brazil

, , , &

References

  • Akingbade, F. O. A. (2004). Estimation of driving rain index for Nigeria. Architectural Science Review, 47, 103–106. doi: 10.1080/00038628.2004.9697032
  • American Society for Testing and Materials. (2009). ASTM E331-00 – Standard test method for water penetration of exterior windows, skylights, doors, and curtain walls by uniform static air pressure difference. West Conshohocken, PA: American Society for Testing and Materials.
  • Andersen, B., Frisvad, J. C., Søndergaard, I., Rasmussen, I. S., & Larsen, L. S. (2011). Associations between fungal species and water-damaged building materials. Applied and Environmental Microbiology, 77, 4180–4188. doi: 10.1128/AEM.02513-10
  • Australian and New Zealand Standards, I. (2008). AS/NZS 4284 – Testing of building façades. Sydney: Australian and New Zealand Standards Institution.
  • Basheer, P. A. M., Long, A. E., & Montgomery, F. R. (1994). An interaction model for causes of deterioration of concrete. Malhotra Symposium on Concrete Technology, San Francisco: American Concrete Institute, pp. 213–233.
  • Blocken, B., & Carmeliet, J. (2004). A review of wind-driven rain research in building science. Journal of Wind Engineering and Industrial Aerodynamics, 92, 1079–1130. doi: 10.1016/j.jweia.2004.06.003
  • Blocken, B., & Carmeliet, J. (2006). On the validity of the cosine projection in wind-driven rain calculations on buildings. Building and Environment, 41, 1182–1189. doi: 10.1016/j.buildenv.2005.05.002
  • Blocken, B., & Carmeliet, J. (2008). Guidelines for the required time resolution of meteorological input data for wind-driven rain calculations on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96, 621–639. doi: 10.1016/j.jweia.2008.02.008
  • Blocken, B., & Carmeliet, J. (2010). Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory. Building and Environment, 45, 691–703. doi: 10.1016/j.buildenv.2009.08.007
  • Blocken, B., Derome, J., & Carmeliet, J. (2013). Rainwater runoff from building facades: A review. Building and Environment, 60, 339–361. doi: 10.1016/j.buildenv.2012.10.008
  • Bottura, M., Ferreira, F., & de Oliveira, L. H. (2014). Brazil – An overview. In D. Hampson, J. Kraatz, & A. X. Sanzhez (Eds.), R&D Investment and impact in the global construction industry (pp. 43–59). Abingdon: Routledge.
  • Budaiwi, I., & Abdou, A. (2013). The impact of thermal conductivity change of moist fibrous insulation on energy performance of buildings under hot-humid conditions. Energy and Buildings, 60, 388–399. doi: 10.1016/j.enbuild.2013.01.035
  • Chand, I., & Bhargava, P. K. (2002). Estimation of driving rain index for India. Building and Environment, 37, 549–554. doi: 10.1016/S0360-1323(01)00057-9
  • Cornick, S. M., & Lacasse, M. A. (2005). A review of climate loads relevant to assessing the watertightness performance of walls, windows, and wall-window interfaces. Journal of ASTM International, 2(10), 12505–16. doi: 10.1520/JAI12505
  • Dell’Isola, M., d’Ambrosio, F. R., Giovinco, G. E., & Ianniello, E. (2013). Experimental analysis of thermal conductivity for building materials depending on moisture content. International Journal of Thermophysics, 33, 1674–1685. doi: 10.1007/s10765-012-1215-z
  • Dima, I. M., & Wallace, J. M. (2003). On the seasonality of the Hadley Cell. Journal of the Atmospheric Sciences, 60, 1522–1527. doi: 10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2
  • Erkal, A., D’Ayala, D., & Sequeira, L. (2012). Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Building and Environment, 57, 336–348. doi: 10.1016/j.buildenv.2012.05.004
  • European Committee for Standardization. (2001). EN 12865 – Hygrothermal performance of building components and building elements. Determination of the resistance of external wall systems to driving rain under pulsating air pressure. Brussels: European Committee for Standardization.
  • European Committee for Standardization. (2009). EN ISO 15927-3 – Hygrothermal performance of buildings – Calculation and presentation of climatic data Part 3: Calculation of a driving rain index for vertical surfaces from hourly wind and rain data. Brussels: European Committee for Standardization.
  • Franke, L., Schumann Hees, R., Klugt, L., Naldani, S., Binda, L., … Baronio, G. (1998). Damage atlas: Classification and analyses of damage patterns found in brick masonry (Protection and Conservation of European Cultural Heritage, Research Report Nr 8, vol. 2). Stuttgart: Fraunhofer IRB Verlag.
  • Galbraith, G. H., McLean, R. C., & Kelly, D. (1997). Moisture permeability measurements under varying barometric pressure. Building Research and Information, 25, 348–353. doi: 10.1080/096132197370165
  • Ge, H. (2015). Influence of time resolution and averaging techniques of meteorological data on the estimation of wind-driven rain load on building facades for Canadian climates. Journal of Wind Engineering and Industrial Aerodynamics, 143, 50–61. doi: 10.1016/j.jweia.2015.04.019
  • Giarma, C., & Aravantinos, D. (2014). On building components’ exposure to driving rain in Greece. Journal of Wind Engineering and Industrial Aerodynamics, 125, 133–145. doi: 10.1016/j.jweia.2013.11.014
  • Hall, C., & Hoff, W. D. (2012). Water transport in brick, stone and concrete (2nd ed). New York: Spon Press.
  • Henriques, F. M. A. (1992). Quantification of wind-driven rain – An experimental approach. Building Research and Information, 20, 295–297. doi: 10.1080/09613219208727227
  • Jerman, M., & Černý, R. (2012). Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings, 53, 39–46. doi: 10.1016/j.enbuild.2012.07.002
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. doi: 10.1127/0941-2948/2006/0130
  • Kubilay, A., Derome, D., Blocken, B., & Carmeliet, J. (2015). Wind-driven rain on two parallel wide buildings: Field measurements and CDF simulations. Journal of Wind Engineering and Industrial Aerodynamics, 146, 11–28. doi: 10.1016/j.jweia.2015.07.006
  • Künzel, H. M., & Zirkelbach, D. (2013). Advances in hygrothermal building component simulation: Modelling moisture sources likely to occur due to rainwater leakage. Journal of Building Performance Simulation, 6, 346–353. doi: 10.1080/19401493.2012.694911
  • Kvande, T., & Lisø, K. R. (2009). Climate adapted design of masonry structures. Building and Environment, 44, 2442–2450. doi: 10.1016/j.buildenv.2009.04.007
  • Lacasse, M. A., O’Connor, T., Nunes, S. C., & Beaulieu, P. (2003). Report from Task 6 of MEWS Project: Experimental assessment of water penetration and entry into wood-frame wall specimens – Final Report (Institute for Research in Construction – Internal Report 113). Ottawa: National Research Council Canada.
  • Li, F. G. N., Smith, A. Z. P., Biddulph, P., Hamilton, I. G., Lowe, R., Mavrogianni, A., … Oreszczyn, T. (2015). Solid-wall U-values: Heat flux measurements compared with standard assumptions. Building Research and Information, 43, 238–252. doi: 10.1080/09613218.2014.967977
  • National Institute of Meteorology of Brazil – INMET. (2015). Bank of meteorological data for education and research. Ministry of Agriculture, Ranching and Supply. Retrieved April 3, 2015, from http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep.
  • Nik, V. M., Mundt-Petersen, S. O., Sasic, A., & de Wilde, P. (2015). Future moisture loads for building facades in Sweden: Climate change and wind-driven rain. Building and Environment, 93, 362–375. doi: 10.1016/j.buildenv.2015.07.012
  • Pérez, J. M., Domínguez, J., Rodríguez, B., del Coz, J. J., & Cano, E. (2013a). Combined use of wind-driven rain and wind pressure to define water penetration risk into building façades: The Spanish case. Building and Environment, 64, 46–56. doi: 10.1016/j.buildenv.2013.03.004
  • Pérez, J. M., Domínguez, J., Rodríguez, B., del Coz, J. J., & Cano, E. (2013b). A new method for determining the water tightness of building façades. Building Research & Information, 41 (4), 401–414. doi: 10.1080/09613218.2013.774936
  • Pérez, J. M., Domínguez, J., Cano, E., del Coz, J. J., & Alonso, M. (2013c). Global analysis of building façade exposure to water penetration in Chile. Building and Environment, 70, 284–297. doi: 10.1016/j.buildenv.2013.09.001
  • Pérez, J. M., Domínguez, J., Cano, E., del Coz, J. J., & Álvarez, F. P. (2015). Improvement alternatives for determining the watertightness performance of building facades. Building Research and Information, 43, 723–736. doi: 10.1080/09613218.2014.943101
  • Pérez, J. M., Domínguez, J., Cano, E., del Coz, J. J., & Martín, A. (2014). Procedure for a detailed territorial assessment of wind-driven rain and driving-rain wind pressure and its implementation to three Spanish regions. Journal of Wind Engineering and Industrial Aerodynamics, 128, 76–89. doi: 10.1016/j.jweia.2014.02.008
  • Pérez, J. M., Domínguez, J., Rodríguez, B., del Coz, J. J., & Cano, E. (2012). Estimation of the exposure of buildings to driving rain in Spain from daily wind and rain data. Building and Environment, 57, 259–270. doi: 10.1016/j.buildenv.2012.05.010
  • Peters, T., & Richter, M. (2014). The atmospheric circulation. In M. Köhll & L. Pancel (Eds.), Tropical forestry handbook (2nd ed.) (pp. 1–24). Berlin: Springer.
  • Peterson, R. G., & Stramma, L. (1991). Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography, 26, 1–73. doi: 10.1016/0079-6611(91)90006-8
  • Richter, I., Mechoso, C. R., & Robertson, A. W. (2008). What determines the position and intensity of the South Atlantic anticyclone in Austral Winter? – An AGCM Study. Journal of Climate, 21, 214–229. doi: 10.1175/2007JCLI1802.1
  • Ruedrich, J., Bartelsen, T., Dohrmann, R., & Siesgemund, S. (2011). Moisture expansion as a deterioration factor for sandstone used in buildings. Environmental Earth Sciences, 63, 1545–1564. doi: 10.1007/s12665-010-0767-0.
  • Sahal, N. (2006). Proposed approach for defining climate regions for Turkey based on annual driving rain index and heating degree-days for building envelope design. Building and Environment, 41, 520–526. doi: 10.1016/j.buildenv.2005.07.004
  • Sahal, N., & Lacasse, M. A. (2008). Proposed method for calculating water penetration test parameters of wall assemblies as applied to Istanbul, Turkey. Building and Environment, 43, 1250–1260. doi: 10.1016/j.buildenv.2007.03.009
  • Sauni, R., Verbeek, J. H., Uitti, J., Jauhiainen, M., Kreiss, K., & Sigsgaard, T. (2015). Remediating buildings damaged by dampness and mould for preventing or reducing respiratory tract symptoms, infections and asthma. Cochrane Database of Systematic Reviews, 2, CD007897. doi: 10.1002/14651858.CD007897.pub3
  • Steele, J. H., Thorpe, S. A., & Turekian, K. K. (2009). Encyclopedia of ocean sciences: Ocean currents (2nd ed). Boston: Elsevier-Academic Press.
  • Steiger, M., Charola, E., & Sterflinger, K. (2011). Weathering and deterioration. In S. Siesgesmund, & R. Snethlage (Eds.), Stone in architecture (pp. 227–316). Berlin: Springer-Verlag Berlin.
  • Straube, J. F., & Burnett, E. F. P. (2000). Simplified prediction of driving rain deposition. Proceedings 1st International Building Physics Conference. Eindhoven: International Association of Building Physics, pp. 375–382.
  • Tang, W., Davidson, C. I., Finger, S., & Vance, K. (2004). Erosion of limestone building surfaces caused by wind-driven rain: 1. Field measurements. Atmospheric Environment, 38, 5589–5599. doi: 10.1016/j.atmosenv.2004.06.030
  • Van den Bossche, N., Lacasse, M. A., & Janssens, A. (2013). A uniform methodology to establish test parameters for watertightness testing. Building and Environment, 63, 145–156. doi: 10.1016/j.buildenv.2012.12.003
  • Van den Bossche, N., Lacasse, M. A., Moore, T., & Janssens, A. (2012). Water infiltration through openings in a vertical plane under static boundary conditions. Proceedings 5th International Building Physics Conference. Kyoto: International Association of Building Physics, pp. 457–463.
  • Welsh, R. E., Skinner, W. R., & Morris, R. J. (1989). A climatology of driving rain pressure for Canada (Climate and Atmospheric Research Directorate Draft Report). Gatineau: Environment Canada, Atmospheric Environment Service.
  • World Health Organization. (2011). Environmental burden of disease associated with inadequate housing. Methods for quantifying health impacts of selected housing risks in the WHO European Region. Copenhagen: Author.
  • World Meteorological Organization. (2008). Guide to meteorological instruments and methods of observation (WMO-No 8). Geneva: WMO.
  • Xie, S., & Carton, J. A. (2004). Tropical Atlantic variability: Patterns, mechanisms, and impacts. In C. Wang, S. Xie, & J. A. Carton (Eds.), Earth climate: The Ocean-Atmosphere interaction (geophysical monograph series vol. 147) (pp. 121–142). Washington: American Geophysical Union.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.