803
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Embodied energy data implications for optimal specification of building envelopes

, &
Pages 429-445 | Received 15 Apr 2019, Accepted 31 Aug 2019, Published online: 27 Sep 2019

References

  • Anand, C. K., & Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and Sustainable Energy Reviews, 67, 408–416. doi: 10.1016/j.rser.2016.09.058
  • Anastaselos, D., Giama, E., & Papadopoulos, A. M. (2009). An assessment tool for the energy, economic and environmental evaluation of thermal insulation solutions. Energy and Buildings, 41(11), 1165–1171. doi: 10.1016/j.enbuild.2009.06.003
  • Arbuckle, P., Kahn, E., & Kriesberg, A. (2017). Challenge paper: Challenges to sharing data and models for life cycle assessment. Journal of Data and Information Quality (JDIQ), 9(1), 6.
  • Athenasmi.org. (2018). LCA, LCI, LCIA, LCC: What’s the Difference? Athena Sustainable Materials Institute. Retrieved from http://www.athenasmi.org/resources/about-lca/whats-the-difference/
  • Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81–92. doi: 10.1016/j.buildenv.2012.11.009
  • Bontinck, P. A., Crawford, R. H., & Stephan, A. (2017). Improving the uptake of hybrid life cycle assessment in the construction industry. Procedia Engineering, 196, 822–829. doi: 10.1016/j.proeng.2017.08.013
  • Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi: 10.1016/j.rser.2013.08.037
  • Cellura, M., Guarino, F., Longo, S., & Mistretta, M. (2014). Energy life-cycle approach in Net zero energy buildings balance: Operation and embodied energy of an Italian case study. Energy and Buildings, 72, 371–381. doi: 10.1016/j.enbuild.2013.12.046
  • Cellura, M., Longo, S., & Mistretta, M. (2011). Sensitivity analysis to quantify uncertainty in life cycle assessment: The case study of an Italian tile. Renewable and Sustainable Energy Reviews, 15(9), 4697–4705. doi: 10.1016/j.rser.2011.07.082
  • Chastas, P., Theodosiou, T., Bikas, D., & Kontoleon, K. (2017). Embodied energy and nearly zero energy buildings: A review in residential buildings. Procedia Environmental Sciences, 38, 554–561. doi: 10.1016/j.proenv.2017.03.123
  • Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied Energy, 143, 395–413. doi: 10.1016/j.apenergy.2015.01.023
  • Clark, D. H. (2013). What Colour is your building?: Measuring and reducing the energy and carbon footprint of buildings. London: RIBA.
  • Cole, R. J., & Fedoruk, L. (2015). Shifting from net-zero to net-positive energy buildings. Building Research & Information, 43(1), 111–120. doi: 10.1080/09613218.2014.950452
  • Crawford, R. (2011). Life cycle assessment in the built environment. London and New York: Routledge.
  • Crawford, R. H. (2008). Validation of a hybrid life-cycle inventory analysis method. Journal of Environmental Management, 88(3), 496–506. doi: 10.1016/j.jenvman.2007.03.024
  • Crawford, R. H., Bontinck, P. A., Stephan, A., & Wiedmann, T. (2017). Towards an automated approach for compiling hybrid life cycle inventories. Procedia Engineering, 180, 157–166. doi: 10.1016/j.proeng.2017.04.175
  • Crawford, R. H., Bontinck, P. A., Stephan, A., Wiedmann, T., & Yu, M. (2018). Hybrid life cycle inventory methods – a review. Journal of Cleaner Production, 172, 1273–1288. doi: 10.1016/j.jclepro.2017.10.176
  • De Wolf, C., Pomponi, F., & Moncaster, A. (2017). Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy and Buildings, 140, 68–80. doi: 10.1016/j.enbuild.2017.01.075
  • Dixit, M. K. (2017). Embodied energy and cost of building materials: Correlation analysis. Building Research & Information, 45(5), 508–523. doi: 10.1080/09613218.2016.1191760
  • Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743. doi: 10.1016/j.rser.2012.03.021
  • Eaton, K. J., & Amato, A. (1998). A comparative environmental life cycle assessment of modern office buildings. Ascot: Steel Construction Institute.
  • Eurima. (2017). Life cycle assessment of buildings – A future-proofed solution in the digitalised world of tomorrow. [ebook]. Retrieved from https://www.eurima.org/uploads/ModuleXtender/Publications/170/Eurima_LCA_WhitePaper_Final_20170915.pdf
  • Frischknecht, R. (2010). LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. The International Journal of Life Cycle Assessment, 15(7), 666–671. doi: 10.1007/s11367-010-0201-6
  • Gelowitz, M. D. C., & McArthur, J. J. (2017). Comparison of type III environmental product declarations for construction products: Material sourcing and harmonization evaluation. Journal of Cleaner Production, 157, 125–133. doi: 10.1016/j.jclepro.2017.04.133
  • Giesekam, J., Barrett, J. R., & Taylor, P. (2016). Construction sector views on low carbon building materials. Building Research & Information, 44(4), 423–444. doi: 10.1080/09613218.2016.1086872
  • Groen, E. A., Heijungs, R., Bokkers, E. A. M., & De Boer, I. J. (2014). Methods for uncertainty propagation in life cycle assessment. Environmental Modelling & Software, 62, 316–325. doi: 10.1016/j.envsoft.2014.10.006
  • Guan, J., Zhang, Z., & Chu, C. (2016). Quantification of building embodied energy in China using an input–output-based hybrid LCA model. Energy and Buildings, 110, 443–452. doi: 10.1016/j.enbuild.2015.11.032
  • Gul, M. S., & Patidar, S. (2015). Understanding the energy consumption and occupancy of a multi-purpose academic building. Energy and Buildings, 87, 155–165. doi: 10.1016/j.enbuild.2014.11.027
  • Gustavsson, L., & Joelsson, A. (2010). Life cycle primary energy analysis of residential buildings. Energy and Buildings, 42(2), 210–220. doi: 10.1016/j.enbuild.2009.08.017
  • Häfliger, I. F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., & Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156, 805–816. doi: 10.1016/j.jclepro.2017.04.052
  • Han, G., & Srebric, J. (2015). Comparison of survey and numerical sensitivity analysis results to assess the role of life cycle analyses from building designers’ perspectives. Energy and Buildings, 108, 463–469. doi: 10.1016/j.enbuild.2015.09.017
  • Hill, C., Norton, A., & Dibdiakova, J. (2018). A comparison of the environmental impacts of different categories of insulation materials. Energy and Buildings, 162, 12–20. doi: 10.1016/j.enbuild.2017.12.009
  • Hill, C., & Zimmer, K. (2018). The environmental impacts of wood compared to other building materials. Norwegian Institute of Bioeconomy Research (NIBIO).
  • Hoxha, E., Habert, G., Lasvaux, S., Chevalier, J., & Le Roy, R. (2017). Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 144, 33–47. doi: 10.1016/j.jclepro.2016.12.068
  • International Organization for Standardisation. (2006). ISO 14040: Environmental management-Life cycle assessment-principles and framework.
  • Jiang, Q., Li, T., Liu, Z., Zhang, H., & Ren, K. (2014). Life cycle assessment of an engine with input-output based hybrid analysis method. Journal of Cleaner Production, 78, 131–138. doi: 10.1016/j.jclepro.2014.04.003
  • Jiao, Y., Lloyd, C. R., & Wakes, S. J. (2012). The relationship between total embodied energy and cost of commercial buildings. Energy and Buildings, 52, 20–27. doi: 10.1016/j.enbuild.2012.05.028
  • Karami, P., Al-Ayish, N., & Gudmundsson, K. (2015). A comparative study of the environmental impact of Swedish residential buildings with vacuum insulation panels. Energy and Buildings, 109, 183–194. doi: 10.1016/j.enbuild.2015.10.031
  • Kendrick, C., Ogden, R., Wang, X., & Baiche, B. (2012). Thermal mass in new build UK housing: A comparison of structural systems in a future weather scenario. Energy and Buildings, 48, 40–49. doi: 10.1016/j.enbuild.2012.01.009
  • Koezjakov, A., Urge-Vorsatz, D., Crijns-Graus, W., & van den Broek, M. (2018). The relationship between operational energy demand and embodied energy in Dutch residential buildings. Energy and Buildings, 165, 233–245. doi: 10.1016/j.enbuild.2018.01.036
  • Kristjansdottir, T. F., Heeren, N., Andresen, I., & Brattebø, H. (2018). Comparative emission analysis of low-energy and zero-emission buildings. Building Research & Information, 46(4), 367–382. doi: 10.1080/09613218.2017.1305690
  • Lenzen, M. (2000). Errors in conventional and input-output – based life – cycle inventories. Journal of Industrial Ecology, 4(4), 127–148. doi: 10.1162/10881980052541981
  • Lenzen, M., & Dey, C. (2000). Truncation error in embodied energy analyses of basic iron and steel products. Energy, 25(6), 577–585. doi: 10.1016/S0360-5442(99)00088-2
  • Lewandowska, A., Noskowiak, A., Pajchrowski, G., & Zarebska, J. (2015). Between full LCA and energy certification methodology – a comparison of six methodological variants of buildings environmental assessment. The International Journal of Life Cycle Assessment, 20(1), 9–22. doi: 10.1007/s11367-014-0805-3
  • Lotteau, M., Loubet, P., Pousse, M., Dufrasnes, E., & Sonnemann, G. (2015). Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. Building and Environment, 93, 165–178. doi: 10.1016/j.buildenv.2015.06.029
  • Lützkendorf, T. (2018). Assessing the environmental performance of buildings: Trends, lessons and tensions. Building Research and Information, 46(5), 594–614. DC. doi: 10.1080/09613218.2017.1356126
  • Lützkendorf, T., Foliente, G., Balouktsi, M., & Wiberg, A. H. (2015). Net-zero buildings: Incorporating embodied impacts. Building Research & Information, 43(1), 62–81. doi: 10.1080/09613218.2014.935575
  • Majeau-Bettez, G., Strømman, A. H., & Hertwich, E. G. (2011). Evaluation of process-and input–output-based life cycle inventory data with regard to truncation and aggregation issues. Environmental Science & Technology, 45(23), 10170–10177. doi: 10.1021/es201308x
  • Malmqvist, T., Glaumann, M., Scarpellini, S., Zabalza, I., Aranda, A., Llera, E., & Díaz, S. (2011). Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. Energy, 36(4), 1900–1907. doi: 10.1016/j.energy.2010.03.026
  • Means, P., & Guggemos, A. (2015). Framework for life cycle assessment (LCA) based environmental decision making during the conceptual design phase for commercial buildings. Procedia Engineering, 118, 802–812. doi: 10.1016/j.proeng.2015.08.517
  • Mohazabieh, S. Z., Ghajarkhosravi, M., & Fung, A. S. (2015). Energy consumption and environmental impact assessment of the energy efficient houses in toronto, Canada. Procedia Engineering, 118, 1024–1029. doi: 10.1016/j.proeng.2015.08.544
  • Moncaster, A. M., & Song, J.-Y. (2012). A comparative review of existing data and methodologies for calculating embodied energy and carbon of buildings. International Journal of Sustainable Building Technology and Urban Development, 3(1), 26–36. doi: 10.1080/2093761X.2012.673915
  • Moran, P., Goggins, J., & Hajdukiewicz, M. (2017). Super-insulate or use renewable technology? Life cycle cost, energy and global warming potential analysis of nearly zero energy buildings (NZEB) in a temperate oceanic climate. Energy and Buildings, 139, 590–607. doi: 10.1016/j.enbuild.2017.01.029
  • Moreno, P. R., Rohmer, S., & Ma, H. W. (2015). Analysis of potential relationships between functional analysis and life cycle assessment. Procedia CIRP, 29, 390–395. doi: 10.1016/j.procir.2015.02.035
  • Omar, W. M. S. W., Doh, J. H., Panuwatwanich, K., & Miller, D. (2014). Assessment of the embodied carbon in precast concrete wall panels using a hybrid life cycle assessment approach in Malaysia. Sustainable Cities and Society, 10, 101–111. doi: 10.1016/j.scs.2013.06.002
  • Palmer, J., & Cooper, I. (2013). United Kingdom housing energy fact file 2013. Department of Energy & Climate Change, Prepared under contract to DECC by Cambridge Architectural Research, Eclipse Research Consultants and Cambridge Energy. The views expressed are not necessarily DECC’sp, 172.
  • Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. doi: 10.1016/j.enbuild.2010.05.007
  • Rauf, A., & Crawford, R. H. (2015). Building service life and its effect on the life cycle embodied energy of buildings. Energy, 79, 140–148. doi: 10.1016/j.energy.2014.10.093
  • RICS. (2012). Methodology to calculate embodied carbon of materials, RICS information paper, IP32/2012, Coventry.
  • Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249–257. doi: 10.1016/j.enbuild.2006.07.001
  • Säynäjoki, A., Heinonen, J., Junnila, S., & Horvath, A. (2017). Can life-cycle assessment produce reliable policy guidelines in the building sector? Environmental Research Letters, 12(1), 013001. doi: 10.1088/1748-9326/aa54ee
  • Schiavoni, S., Bianchi, F., & Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988–1011. doi: 10.1016/j.rser.2016.05.045
  • Schonhardt, U., Binz, A., Wohler, M., & Dott, R. (2003). Ökobilanz eines Vakuum-Isolations-Paneels (VIP). University of Applied Sciences, Institute of Energy, Basel, German.
  • Silvestre, J. D., De Brito, J., & Pinheiro, M. D. (2014). Environmental impacts and benefits of the end-of-life of building materials–calculation rules, results and contribution to a ‘cradle to cradle’ life cycle. Journal of Cleaner Production, 66, 37–45. doi: 10.1016/j.jclepro.2013.10.028
  • Soust-Verdaguer, B., Llatas, C., & García-Martínez, A. (2016). Simplification in life cycle assessment of single-family houses: A review of recent developments. Building and Environment, 103, 215–227. doi: 10.1016/j.buildenv.2016.04.014
  • Stephan, A., Crawford, R. H., & De Myttenaere, K. (2013). A comprehensive assessment of the life cycle energy demand of passive houses. Applied Energy, 112, 23–34. doi: 10.1016/j.apenergy.2013.05.076
  • Stephan, A., & Stephan, L. (2014). Reducing the total life cycle energy demand of recent residential buildings in Lebanon. Energy, 74, 618–637. doi: 10.1016/j.energy.2014.07.028
  • Szalay, A. Z. Z. (2007). What is missing from the concept of the new European building Directive? Building and Environment, 42(4), 1761–1769. doi: 10.1016/j.buildenv.2005.12.003
  • Takano, A., Hughes, M., & Winter, S. (2014). A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Building and Environment, 82, 526–535. doi: 10.1016/j.buildenv.2014.09.026
  • Tettey, U. Y. A., Dodoo, A., & Gustavsson, L. (2014). Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building. Energy and Buildings, 82, 369–377. doi: 10.1016/j.enbuild.2014.07.009
  • Thormark, C. (2002). A low energy building in a life cycle – its embodied energy, energy need for operation and recycling potential. Building and Environment, 37(4), 429–435. doi: 10.1016/S0360-1323(01)00033-6
  • Treloar, G. J., Love, P. E., & Holt, G. D. (2001). Using national input/output data for embodied energy analysis of individual residential buildings. Construction Management and Economics, 19(1), 49–61. doi: 10.1080/014461901452076
  • Trent, N. (2019). Global Building Insulation Market Report 2019 – Market Size, Share, Price, Trend and Forecast, Wise Guy Research Consultants Pvt Ltd.
  • Venkatesh, A., Jaramillo, P., Griffin, W. M., & Matthews, H. S. (2010). Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.
  • Wallhagen, M., Glaumann, M., & Malmqvist, T. (2011). Basic building life cycle calculations to decrease contribution to climate change–case study on an office building in Sweden. Building and Environment, 46(10), 1863–1871. doi: 10.1016/j.buildenv.2011.02.003
  • Wiedmann, T. O., Suh, S., Feng, K., Lenzen, M., Acquaye, A., Scott, K., & Barrett, J. R. (2011). Application of hybrid life cycle approaches to emerging energy technologies–the case of wind power in the UK. Environmental Science & Technology, 45(13), 5900–5907. doi: 10.1021/es2007287

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.