529
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The importance of thermal modelling and prototyping in shelter design

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 379-400 | Received 18 Jun 2019, Accepted 01 Nov 2019, Published online: 22 Nov 2019

References

  • Albadra, D., Coley, D., & Hart, J. (2018). Toward healthy housing for the displaced. The Journal of Architecture, 23(1), 115–136. doi: 10.1080/13602365.2018.1424227
  • Albadra, D., Vellei, M., Coley, D., & Hart, J. (2017). Thermal comfort in desert refugee camps: An interdisciplinary approach. Building and Environment, 124, 460–477. doi: 10.1016/j.buildenv.2017.08.016
  • American Society of Heating Refrigerating and Air-Conditioning. (2017). 2017 ASHRAE handbook: Fundamentals (SI). Atlanta: American Society of Heating Refrigerating and Air-Conditioning.
  • American Society of Heating Refrigerating and Air-Conditioning Engineers. (2014). Guideline 14-2014, measurement of energy and demand Savings. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Ba, S., & Joseph, V. R. (2018, September 28). MaxPro: Maximum Projection Designs. Retrieved from https://CRAN.R-project.org/package=MaxPro
  • Borge-Diez, D., Colmenar-Santos, A., Mur-Pérez, F., & Castro-Gil, M. (2013a). Impact of passive techniques and clean conditioning systems on comfort and economic feasibility in low-cost shelters. Energy and Buildings, 62, 414–426. doi: 10.1016/j.enbuild.2013.03.032
  • Borge-Diez, D., Colmenar-Santos, A., Pérez-Molina, C., & Castro-Gil, M. (2013b). Passive climatization using a cool roof and natural ventilation for internally displaced persons in hot climates: Case study for Haiti. Building and Environment, 59, 116–126. doi: 10.1016/j.buildenv.2012.08.013
  • Chartered Institution of Building Services Engineers. (2013). The limits of thermal comfort: Avoiding overheating in European buildings. London: The Chartered Institution of Building Services Engineers.
  • Chartered Institution of Building Services Engineers. (2017a). Design methodology for the assessment of overheating risk in homes. London: The Chartered Institution of Building Services Engineers.
  • Chartered Institution of Building Services Engineers. (2017b). Environmental design: CIBSE Guide A (8th ed.). London: Chartered Institution of Building Services Engineers.
  • Clarke, J. A. (2001). Energy simulation in building design (2nd ed). Oxford: Butterworth-Heinemann.
  • Clarke, J. A., & Hensen, J. L. M. (2015). Integrated building performance simulation: Progress, prospects and requirements. Building and Environment, 91, 294–306. doi: 10.1016/j.buildenv.2015.04.002
  • Cornaro, C., Sapori, D., Bucci, F., Pierro, M., & Giammanco, C. (2015). Thermal performance analysis of an emergency shelter using dynamic building simulation. Energy and Buildings, 88, 122–134. doi: 10.1016/j.enbuild.2014.11.055
  • Corsellis, T. (2001). The selection of sites for temporary settlements for forced migrants. Cambridge: University of Cambridge.
  • Corsellis, T. (ed.). (2012). Transitional shelter guidelines (1st ed.). Geneva: Shelter Centre.
  • Crawford, C., Manfield, P., & McRobie, A. (2005). Assessing the thermal performance of an emergency shelter system. Energy and Buildings, 37(5), 471–483. doi: 10.1016/j.enbuild.2004.09.001
  • Dalal, A., Darweesh, A., Misselwitz, P., & Steigemann, A. (2018). Planning the ideal refugee camp? A critical interrogation of recent planning innovations in Jordan and Germany. Urban Planning, 3(4), 64–78. doi: 10.17645/up.v3i4.1726
  • de Wilde, P. (2014). The gap between predicted and measured energy performance of buildings: A framework for investigation. Automation in Construction, 41, 40–49. doi: 10.1016/j.autcon.2014.02.009
  • de Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings, 34(9), 951–958. doi: 10.1016/S0378-7788(02)00070-1
  • Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., … others, (2011). US Department of energy commercial reference building models of the national building stock. Colorado: NREL.
  • Félix, D., Branco, J. M., & Feio, A. (2013). Temporary housing after disasters: A state of the art survey. Habitat International, 40, 136–141. doi: 10.1016/j.habitatint.2013.03.006
  • Fosas, D., Albadra, D., Natarajan, S., & Coley, D. A. (2018a). Refugee housing through cyclic design. Architectural Science Review, 61(5), 327–337. doi: 10.1080/00038628.2018.1502155
  • Fosas, D., Herrera, M., Natarajan, S., & Coley, D. A. (2018b). Weather files for remote places: Leveraging reanalyses and satellite datasets. 1st International conference on data for low energy buildings, (pp. 14–19). Murcia: Diego Marín, Murcia.
  • Fosas, D., Moran, F., Natarajan, S., Orr, J., & Coley, D. (2019). Dataset for “The importance of thermal modelling and prototyping in transitional shelter design” [Dataset]. doi:10.15125/BATH-00668
  • Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. doi: 10.1175/JCLI-D-16-0758.1
  • Haigh, S. K. (2012). Thermal conductivity of sands. Géotechnique, 62(7), 617–625. doi: 10.1680/geot.11.P.043
  • Hamilton, I., Summerfield, A., Oreszczyn, T., & Ruyssevelt, P. (2017). Using epidemiological methods in energy and buildings research to achieve carbon emission targets. Energy and Buildings, 154(Supplement C), 188–197. doi: 10.1016/j.enbuild.2017.08.079
  • Huebscher, R. (1948). Friction equivalents for round, square and rectangular ducts. ASHVE Transactions (Renamed ASHRAE Transactions), 54, 101–144.
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. doi: 10.1109/MCSE.2007.55
  • Jones, E., Oliphant, T., Peterson, P., & others, (2001). SciPy: Open source scientific tools for Python. Retrieved from http://www.scipy.org/
  • Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments. Biometrika, 102(2), 371–380. doi: 10.1093/biomet/asv002
  • Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., & Djurovic-Petrovic, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 45(7), 1683–1697. doi: 10.1016/j.buildenv.2010.01.021
  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93. doi: 10.1093/biomet/30.1-2.81
  • Kibirige, H. (2019, May 23). A grammar of graphics for Python. Contribute to has2k1/plotnine development by creating an account on GitHub. Retrieved from GitHub website: https://github.com/has2k1/plotnine
  • Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., … Jupyter Development Team, O. (2016). Jupyter notebooks – a publishing format for reproducible computational workflows. 87–90. doi:10.3233/978-1-61499-649-1-87
  • Knight, W. R. (1966). A computer method for calculating Kendall’s tau with ungrouped data. Journal of the American Statistical Association, 61(314), 436–439. doi: 10.1080/01621459.1966.10480879
  • Kokoska, S., & Zwillinger, D. (2000). CRC standard probability and statistics tables and formulae. London: Taylor and Francis.
  • Kottek, M., Grieser, J., & Beck, C. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. doi: 10.1127/0941-2948/2006/0130
  • Kruis, N., & Krarti, M. (2017). Three-dimensional accuracy with two-dimensional computation speed: Using the KivaTM numerical framework to improve foundation heat transfer calculations. Journal of Building Performance Simulation, 10(2), 161–182. doi: 10.1080/19401493.2016.1211177
  • Liddament, M. W. (1996). A guide to energy efficient ventilation: This report is part of the work of the IEA energy conservation in buildings & community systems programme, Annex V. Coventry: Annex V Air Infiltration and Ventilation Centre.
  • Manfield, P., Ashmore, J., & Corsellis, T. (2004). Design of humanitarian tents for use in cold climates. Building Research & Information, 32(5), 368–378. doi: 10.1080/0961321042000220990
  • Mantesi, E., Hopfe, C. J., Cook, M. J., Glass, J., & Strachan, P. (2018). The modelling gap: Quantifying the discrepancy in the representation of thermal mass in building simulation. Building and Environment, 131, 74–98. doi: 10.1016/j.buildenv.2017.12.017
  • McKinney, W. (2010). Data structures for statistical computing in python. 51–56. Retrieved from SciPy website: http://conference.scipy.org/proceedings/scipy2010/mckinney.html
  • Monari, F., & Strachan, P. A. (2017). Calibro an R package for the automatic calibration of building energy models. Proceedings of building simulation 2017.
  • National Renewable Energy Laboratory. (2018). EnergyPlusTM v9.0.1. Retrieved from NREL website: https://github.com/NREL/EnergyPlus/releases/tag/v9.0.1
  • Obyn, S., van Moeseke, G., & Virgo, V. (2015). Thermal performance of shelter modelling: Improvement of temporary structures. Energy and Buildings, 89, 170–182. doi: 10.1016/j.enbuild.2014.12.035
  • Orme, M., Liddament, M. W., & Wilson, A. (1998). Numerical data for air infiltration and natural ventilation Calculations. Bracknell: Air Infiltration and Ventilation Centre.
  • Paszkiewicz, N., & Fosas, D. (2019). Reclaiming refugee agency and its implications for shelter design in refugee camps. Proceedings of the 1st International Conference on comfort at the extremes: Energy, economy and climate (pp. 584–594). Dubai: Ecohouse Initiative Ltd.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
  • Perez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9(3), 21–29. doi: 10.1109/MCSE.2007.53
  • Potangaroa, R., & Hynds, M. (2008). Thermal comfort tools for emergency shelter in major disasters. Proceedings from International Conference on building education and research (pp. 1457–1472). Heritance Kandalama: School of the Built Environment, University of Salford.
  • Pöschl, R. (2016). Modelling the thermal comfort performance of tents used in humanitarian relief. Loughborough: Loughborough University. Retrieved from https://pdfs.semanticscholar.org/c40d/d8cd71ddd730fbac11a9422a2556955bd1ef.pdf
  • Python Software Foundation. (2019). Python 3.7.3. Retrieved from Python Software Foundation webpage: https://docs.python.org/3.7/reference/
  • R Core Team. (2019). R: A Language and Environment for Statistical Computing. Retrieved from R Core Team website: https://www.R-project.org/
  • Roubeyrie, L., & Celles, S. (2018). Windrose: A Python Matplotlib, Numpy library to manage wind and pollution data, draw windrose. Journal of Open Source Software, 3(29), 268. doi: 10.21105/joss.00268
  • Schroedter-Homscheidt, M., Hoyer-Klick, C., Killius, N., Lefèvre, M., Wald, L., Wey, E., & Saboret, L. (2017). User’s guide to the CAMS radiation service (No. User Guide 1). Reading: The European Centre for Medium-Range Weather Forecasts.
  • Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101. doi: 10.2307/1412159
  • The Sphere project. (2011). Humanitarian Charter and minimum Standards in humanitarian response (3rd ed.) Retrieved from The Sphere project website: https://handbook.spherestandards.org
  • Steadman, R. G. (1979a). The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology, 18(7), 861–873. doi:10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
  • Steadman, R. G. (1979b). The assessment of sultriness. Part II: Effects of wind, extra radiation and barometric pressure on apparent temperature. Journal of Applied Meteorology, 18(7), 874–885. doi:10.1175/1520-0450(1979)018<0874:TAOSPI>2.0.CO;2
  • Steadman, R. G. (1984). A universal scale of apparent temperature. Journal of Climate and Applied Meteorology, 23(12), 1674–1687. doi:10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2
  • Swami, M. V., & Chandra, S. (1987). Procedures for calculating natural ventilation airflow rates in buildings (No. FSEC-CR-163-86). Cape Canaveral, FL: Florida Solar Energy Center.
  • Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835. doi: 10.1016/j.rser.2008.09.033
  • Taylor, J., Davies, M., Mavrogianni, A., Shrubsole, C., Hamilton, I., Das, P., … Biddulph, P. (2016). Mapping indoor overheating and air pollution risk modification across Great Britain: A modelling study. Building and Environment, 99, 1–12. doi: 10.1016/j.buildenv.2016.01.010
  • U.S. Department of Commerce. (2019). National oceanic and atmospheric administration. Retrieved from https://www.noaa.gov/
  • United Nations High Commissioner for Refugees. (2016). Shelter design catalogue. Geneva: United Nations High Commissioner for Refugees.
  • United Nations High Commissioner for Refugees. (2017a). Global report 2017. Geneva: UNHCR.
  • United Nations High Commissioner for Refugees. (2017b). Statistical Yearbook 2016. Geneva: UNHCR.
  • United Nations High Commissioner for Refugees. (2019a). UNHCR population data and key demographical indicator – Bangladesh, Cox’s Bazar. Retrieved from UNHCR website: https://data2.unhcr.org/en/documents/details/69523
  • United Nations High Commissioner for Refugees. (2019b). UNHCR statistics – the world in numbers. Retrieved from UNHCR website: http://popstats.unhcr.org
  • van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30. doi: 10.1109/MCSE.2011.37
  • Van Wijk, W. R., & De Vries, D. (1963). Periodic temperature variations in a homogeneous soil. Physics of Plant Environment, 1, 103–143.
  • VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A., … Sievert, S. (2018). Altair: Interactive statistical visualizations for python. Journal of Open Source Software, doi: 10.21105/joss.01057
  • Waskom, M. (2018). mwaskom/seaborn: v0.9.0. doi: 10.5281/zenodo.1313201
  • Yacout, G., Almomani, H., & United Nations High Commissioner for Refugees, (2018). Jordan Factsheet: Azraq Refugee Camp (December 2018). Retrieved from UNHCR website: https://reliefweb.int/report/jordan/unhcr-jordan-factsheet-azraq-refugee-camp-december-2018
  • Yu, Y., Long, E., Shen, Y., & Yang, H. (2016). Assessing the thermal performance of temporary shelters. Procedia Engineering, 159, 174–178. doi: 10.1016/j.proeng.2016.08.152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.