220
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Thermographic imaging for early detection of biocolonization on buildings

, , &
Pages 856-865 | Received 20 Sep 2019, Accepted 12 Feb 2020, Published online: 09 Mar 2020

References

  • Ahmed, E., & Holmström, S. J. M. (2015). Microbe–mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms. Chemical Geology, 403, 13–23. doi: 10.1016/j.chemgeo.2015.03.009
  • Avdelidis, N. P., & Moropoulou, A. (2004). Applications of infrared thermography for the investigation of historic structures. Journal of Cultural Heritage, 5(1), 119–127. doi: 10.1016/j.culher.2003.07.002
  • Avdelidis, N. P., Moropoulou, A., & Theoulakis, P. (2003). Detection of water deposits and movement in porous materials by infrared imaging. Infrared Physics & Technology, 44(3), 183–190. doi: 10.1016/S1350-4495(02)00212-8
  • Barreira, E., & Almeida, R. M. S. F. (2015). Drying evaluation using infrared thermography. Energy Procedia, 78, 170–175. doi: 10.1016/j.egypro.2015.11.135
  • Becerra, J., Ortiz, P., Zaderenko, A. P., & Karapanagiotis, I. (2020). Assessment of nanoparticles/nanocomposites to inhibit micro-algal fouling on limestone façades. Building Research & Information, 48(2), 180–190. doi: 10.1080/09613218.2019.1609233
  • Beck, J. V., Cole, K. D., Haji-Sheikh, A., & Litkouhl, B. (1992). Heat conduction using Green’s function. New York: Taylor & Francis.
  • Bodnar, J. L., Candoré, J. C., Nicolas, J. L., Szatanik, G., Detalle, V., & Vallet, J. M. (2012). Stimulated infrared thermography applied to help restoring mural paintings. NDT & E International, 49, 40–46. doi: 10.1016/j.ndteint.2012.03.007
  • Borderie, F., Tête, N., Cailhol, D., Alaoui-Sehmer, L., Bousta, F., Rieffel, D., … Alaoui-Sossé, B. (2014). Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Science of the Total Environment, 484(1), 43–52. Scopus. doi: 10.1016/j.scitotenv.2014.03.043
  • Carlomagno, G. M., & de Luca, L. (1987). Heat transfer measurements by means of infrared thermography. Flow Visualization IV, 611.
  • Cutler, N. A., Viles, H. A., Ahmad, S., McCabe, S., & Smith, B. J. (2013). Algal ‘greening’ and the conservation of stone heritage structures. Science of The Total Environment, 442, 152–164. doi: 10.1016/j.scitotenv.2012.10.050
  • De los Rios, A., & Ascaso, C. (2005). Contributions of in situ microscopy to the current understanding of stone biodeterioration. International Microbiology, 8(3), 181.
  • De Vriendt, A. B. (1998). La Transmission de la chaleur: Introduction au rayonnement thermique (Vol. 2). G. Morin.
  • Di Martino, P. (2016). What about biofilms on the surface of stone monuments? The Open Conference Proceedings Journal, 7(1), doi: 10.2174/2210289201607020014
  • European Committee for Standardization. (2008). CSN EN ISO 11664-4 – Colorimetry – Part 4: CIE 1976 L*a*b* Colour space (ISO 11664- 4:2008), Category: 0117 Optics. https://www.en-standard.eu. https://www.en-standard.eu/csn-en-iso-11664-4-colorimetry-part-4-cie-1976-l-a-b-colour-space-iso-11664-4-2008/
  • European Committee for Standardization. (2010). NF EN 15801 – Conservation of cultural property – test methods – determination of water absorption by capillarity. https://www.boutique.afnor.org/norme/nf-en-15801/conservation-des-biens-culturels-methodes-d-essai-determination-de-l-absorption-par-capillarite/article/644915/fa155138
  • Eyssautier-Chuine, S., Gommeaux, M., Moreau, C., Thomachot-Schneider, C., Fronteau, G., Pleck, J., & Kartheuser, B. (2014). Assessment of new protective treatments for porous limestone combining water-repellency and anti-colonization properties. Quarterly Journal of Engineering Geology and Hydrogeology, 47(2), 177–187. doi: 10.1144/qjegh2013-026
  • Gambino, M., Sanmartín, P., Longoni, M., Villa, F., Mitchell, R., & Cappitelli, F. (2019). Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation. Science of The Total Environment, 659, 342–353. doi: 10.1016/j.scitotenv.2018.12.358
  • Garty, J. (1990). Influence of epilithic microorganisms on the surface temperature of building walls. Canadian Journal of Botany, 68(6), 1349–1353. doi: 10.1139/b90-171
  • Gavrilov, D., Maev, R. G., & Almond, D. P. (2014). A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis. Canadian Journal of Physics, 92(4), 341–364. Scopus. doi: 10.1139/cjp-2013-0128
  • Goffredo, G. B., Accoroni, S., Totti, C., Romagnoli, T., Valentini, L., & Munafò, P. (2017). Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Building and Environment, 112, 209–222. doi: 10.1016/j.buildenv.2016.11.034
  • Grossi, C. M., & Brimblecombe, P. (2008). Past and future colouring patterns of historic stone buildings. Materiales de Construcción, 58(289–290), 143–160. doi: 10.3989/mc.2008.v58.i289-290.81
  • Grossi, C. M., Brimblecombe, P., Esbert, R. M., & Alonso, F. J. (2007). Color changes in architectural limestones from pollution and cleaning. Color Research & Application, 32(4), 320–331. doi: 10.1002/col.20322
  • Hirsch, P., Eckhardt, F. E. W., & Palmer, R. J. (1995). Methods for the study of rock-inhabiting microorganisms – a mini review. Journal of Microbiological Methods, 23(2), 143–167. doi: 10.1016/0167-7012(95)00017-F
  • Hladik, J. (1997). Métrologie des propriétés thermophysiques des matériaux. http://archives.umc.edu.dz/handle/123456789/118975
  • Jaeger, J. C., & Carslaw, H. S. (1959). Conduction of heat in solids. Oxford: Clarendon P.
  • Kluge, B., Peters, A., Krüger, J., & Wessolek, G. (2013). Detection of soil microbial activity by infrared thermography (IRT). Soil Biology and Biochemistry, 57, 383–389. Scopus. doi: 10.1016/j.soilbio.2012.09.022
  • Kylili, A., Fokaides, P. A., Christou, P., & Kalogirou, S. A. (2014). Infrared thermography (IRT) applications for building diagnostics: A review. Applied Energy, 134, 531–549. doi: 10.1016/j.apenergy.2014.08.005
  • Li, X., Arai, H., Shimoda, I., Kuraishi, H., & Katayama, Y. (2008). Enumeration of sulfur-oxidizing microorganisms on deteriorating stone of the Angkor Monuments, Cambodia. Microbes and Environments, 23(4), 293–298. doi: 10.1264/jsme2.ME08521
  • Maldague, X. (2001). Theory and practice of infrared technology for nondestructive testing. New York: Wiley.
  • McNamara, C. J., & Mitchell, R. (2005). Microbial deterioration of historic stone. Frontiers in Ecology and the Environment, 3(8), 445–451. doi: 10.1890/1540-9295(2005)003[0445:mdohs]2.0.co;2
  • Mihajlovski, A., Seyer, D., Benamara, H., Bousta, F., & Di Martino, P. (2014). An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Annals of Clinical Microbiology and Antimicrobials, http://link.springer.com/article/10.1007%2Fs13213-014-0956-2. doi:10.1007/s13213-014-0956-2
  • Moropoulou, A., Avdelidis, N. P., Karoglou, M., Delegou, E. T., Alexakis, E., & Keramidas, V. (2018). Multispectral applications of infrared thermography in the diagnosis and protection of built cultural heritage. Applied Sciences (Switzerland), 8(2), Scopus. doi: 10.3390/app8020284
  • Moropoulou, A., Karoglou, M., Bakolas, A., Krokida, M., & Maroulis, Z. B. (2014). Moisture transfer kinetics in building materials and components: Modeling, experimental data, simulation. In J. M. P. Q. Delgado (Ed.), Drying and Wetting of building materials and components (pp. 27–49). Springer International Publishing. doi: 10.1007/978-3-319-04531-3_2
  • Moropoulou, A., Labropoulos, K. C., Delegou, E. T., Karoglou, M., & Bakolas, A. (2013). Non-destructive techniques as a tool for the protection of built cultural heritage. Construction and Building Materials, 48, 1222–1239. doi: 10.1016/j.conbuildmat.2013.03.044
  • Mouhoubi, K. (2016). Thermographie infrarouge stimulée appliquée à la détection et à la caractérisation d’altérations structurales de peintures murales du patrimoine. [Reims champagne Ardenne]. http://www.theses.fr/2016REIMS001
  • Nuhoglu, Y., Oguz, E., Uslu, H., Ozbek, A., Ipekoglu, B., Ocak, I., & Hasenekoglu, I. (2006). The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Science of the Total Environment, 364(1–3), 272–283. Scopus. doi: 10.1016/j.scitotenv.2005.06.034
  • Özışık, M. N. (1993). Heat conduction. New York: Wiley.
  • Papida, S., Murphy, W., & May, E. (2000). Enhancement of physical weathering of building stones by microbial populations. International Biodeterioration & Biodegradation, 46(4), 305–317. doi: 10.1016/S0964-8305(00)00102-5
  • Pinheiro, A. C., Mesquita, N., Trovão, J., Soares, F., Tiago, I., Coelho, C., … Portugal, A. (2018). Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage, doi: 10.1016/j.culher.2018.07.008
  • Pozo-Antonio, J. S., Montojo, C., López de Silanes, M. E., de Rosario, I., & Rivas, T. (2017). In situ evaluation by colour spectrophotometry of cleaning and protective treatments in granitic Cultural heritage. International Biodeterioration & Biodegradation, 123, 251–261. doi: 10.1016/j.ibiod.2017.07.004
  • Santunione, G., Ferrari, C., Siligardi, C., Muscio, A., & Sgarbi, E. (2019). Accelerated biological ageing of solar reflective and aesthetically relevant building materials. Advances in Building Energy Research, 13(2), 264–281. doi: 10.1080/17512549.2018.1488616
  • Schmitt, J., & Flemming, H.-C. (1999). Water binding in biofilms. Water Science and Technology, 39(7), 77–82. doi:10.1016/S0273-1223(99)00153-5 doi: 10.2166/wst.1999.0333
  • Tran, T. H., Govin, A., Guyonnet, R., Grosseau, P., Lors, C., Damidot, D., … Ruot, B. (2014). Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: Comparison between laboratory and field-scale experiments. International Biodeterioration & Biodegradation, 86, 334–342. doi: 10.1016/j.ibiod.2013.10.005
  • Vartoukian, S. R., Palmer, R. M., & Wade, W. G. (2010). Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiology Letters, 309(1), 1–7. Scopus. doi: 10.1111/j.1574-6968.2010.02000.x
  • Vavilov, V. P., & Maldague, X. P. (1992). Dynamic thermal tomography: New promise in the IR thermography of solids. Thermosense XIV: An International Conference on Thermal Sensing and Imaging Diagnostic Applications, 1682, 194–206.
  • Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration & Biodegradation, 46(4), 343–368. doi: 10.1016/S0964-8305(00)00109-8
  • Zhang, F., Zhang, X., Li, Y., Tao, Z., Liu, W., & He, M. (2018). Quantitative description theory of water migration in rock sites based on infrared radiation temperature. Engineering Geology, 241, 64–75. doi: 10.1016/j.enggeo.2018.05.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.