2,932
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Cross-linking of biopolymers for stabilizing earthen construction materials

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 502-514 | Received 17 Aug 2021, Accepted 29 Oct 2021, Published online: 16 Nov 2021

References

  • Araki, H., Koseki, J., & Sato, T. (2016). Tensile strength of compacted rammed earth materials. Soils and Foundations, 56(2), 189–204. https://doi.org/10.1016/j.sandf.2016.02.003
  • Ayeldeen, M. K., Negm, A. M., & El Sawwaf, M. A. (2016). Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian Journal of Geosciences, 9(5), 1–13. https://doi.org/10.1007/s12517-016-2366-1
  • Becker, A., Katzen, F., Pühler, A., & Ielpi, L. (1998). Xanthan gum biosynthesis and application: A biochemical /genetic perspective. Applied Microbiology and Biotechnology, 50(2), 145–152. https://doi.org/10.1007/s002530051269
  • Beckett, C. (2011). The role of material structure in compacted earthen building materials: Implications for design and construction. Durham University. http://etheses.dur.ac.uk/3313/
  • Bouazza, A., Gates, W. P., & Ranjith, P. G. (2009). Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique, 59(1), 71–72. https://doi.org/10.1680/geot.2007.00137
  • Bryan, A. J. (1988). Criteria for the suitability of soil for cement stabilization. Building and Environment, 23(4), 309–319. https://doi.org/10.1016/0360-1323(88)90037-6
  • BS 1377-2. (1990). Methods of test for soils for civil engineering purposes – part 2 : classification tests. BSI.
  • BS 1377-4. (1990). Methods of test for soils for civil engineering purposes - part 4 : compaction tests (Issue 1). BSI.
  • BS 1377-7. (1990). Methods of test for soils for civil engineering purposes - part 7 : shear strength tests (total stress). BSI.
  • BS 5930. (2015). Code of practice for ground investigations (B. S. Institution (ed.); Issue 1). British Standards Institution.
  • BS EN 197-1. (2011). Cement. Composition, specifications and conformity criteria for common cements (British Standards Association (ed.); Issue October 2015). British Standards Association.
  • Bui, T. T., Bui, Q. B., Limam, A., & Maximilien, S. (2014). Failure of rammed earth walls: From observations to quantifications. Construction and Building Materials, 51, 295–302. https://doi.org/10.1016/j.conbuildmat.2013.10.053
  • Cabalar, A. F., & Canakci, H. (2011). Direct shear tests on sand treated with xanthan gum. Proceedings of the Institution of Civil Engineers – Ground Improvement, 164(2), 57–64. https://doi.org/10.1680/grim.800041
  • Casas, J. A., Mohedano, A. F., & García-Ochoa, F. (2000). Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 80(12), 1722–1727. https://doi.org/10.1002/1097-0010(20000915)80:12%3C1722::AID-JSFA708%3E3.0.CO;2-X
  • Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015, January). Effects of xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  • Chang, I., Kwon, Y. M., Im, J., & Cho, G. C. (2019). Soil consistency and interparticle characteristics of xanthan gum biopolymer–containing soils with pore-fluid variation. Canadian Geotechnical Journal, 56(8), 1206–1213. https://doi.org/10.1139/cgj-2018-0254
  • Chang, I., Prasidhi, A. K., Im, J., & Cho, G.-C. (2015). Soil strengthening using thermo-gelation biopolymers. Construction and Building Materials, 77, 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  • Chen, R. (2014). Bio stabilisation for geopolymer enchancement and mine tailings dust control. The University of Arizona. http://hdl.handle.net/10150/319999
  • Chen, R., Zhang, L., Budhu, M., Latifi, N., Horpibulsuk, S., Meehan, C. L., Majid, M. Z. A., Rashid, A. S. A., Chang, I., Prasidhi, A. K., Cho, G. C., Desert, S., Qureshi, M. U., Chang, I., Al-sadarani, K., Paper, C., Bessaih, N., Al, K., Katzbauer, B., … Cho, G. C. (2016). Applications of biopolymers and other biotechnological products in building materials. Geoderma, 139(1), 39–47. https://doi.org/10.1007/s00253-004-1714-3
  • Chudzikowski, R. J. (1971). Guar gum and its applications. Journal of the Society of Cosmetic Chemists, 22(1), 43–60. https://doi.org/10.1016/j.ijbiomac.2016.04.001
  • Ding, X., Xu, G., Liu, W. V., Yang, L., & Albijanic, B. (2019). Effect of polymer stabilizers’ viscosity on red sand structure strength and dust pollution resistance. Powder Technology, 352, 117–125. https://doi.org/10.1016/j.powtec.2019.04.046
  • Fischer, C. C., Navarrete, R. C., Constien, V. G., Coffey, M. D., & Asadi, M. (2001). Novel application of synergistic Guar/non-acetylated xanthan gum mixtures in hydraulic fracturing. SPE International Symposium Polymer Oilfield Chemistry, 527–538. https://doi.org/10.2118/65037-MS
  • Frencham, G. J. (1982). The performance of earth buildings. Deakin University.
  • Garcıa-Ochoa, F., Santos, V. E., Casas, J. A., & Gomez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/s0734-9750(00)00050-1
  • Gresta, F., De Luca, A. I., Strano, A., Falcone, G., Santonoceto, C., Anastasi, U., & Gulisano, G. (2014). Economic and environmental sustainability analysis of guar (Cyamopsis tetragonoloba L.) farming process in a Mediterranean area: Two case studies. Italian Journal of Agronomy, 9(1), 20. https://doi.org/10.4081/ija.2014.565
  • Gulrez, S., Al-Assaf, S., & Phillips, G. (2011). Hydrogels: Methods of preparation, characterisation and applications. In A. Carpi (Eds.), Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications (pp. 117–150). Intech. https://doi.org/10.5772/57353
  • Heathcote, K. A. (1995). Durability of earthwall buildings. Construction and Building Materials, 9(3), 185–189. https://doi.org/10.1016/0950-0618(95)00035-E
  • Houben H., and Guillaud H (1994). Earth construction. A comprehensive guide. distributeur Craterre-Eag.
  • Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability, 59(1–3), 81–84. https://doi.org/10.1016/S0141-3910(97)00180-8
  • Kerali, A. G. (2001). Durability of compressed and cement-stabilised building blocks September 357. http://www6.zetatalk.com/docs/Bricks/Durability_Of_Compressed_And_Cement-Stabilised_Building_Blocks_2001.pdf
  • Khatami, H. R., & O’Kelly, B. C. (2013). Improving mechanical properties of sand using biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 139(August), 1402–1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861
  • Latifi, N., Horpibulsuk, S., Meehan, C. L., Abd Majid, M. Z., Tahir, M. M., & Mohamad, E. T. (2017). Improvement of problematic soils with biopolymer – An environmentally friendly soil stabilizer. Journal of Materials in Civil Engineering, 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706
  • Lax, C. (2010). Life Cycle Assessment of rammed earth. University of Bath.
  • Krishna Leela J., & Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 23(6), 687–689. https://doi.org/10.1007/s004499900054
  • Lo, Y.-M., Yang, S.-T., & Min, D. B. (1997). Ultrafiltration of xanthan gum fermentation broth: Process and economic analyses. Journal of Food Engineering, 31(2), 219–236. https://doi.org/10.1016/S0260-8774(96)00068-4
  • Maskell, D., Heath, A., & Walker, P. (2014). Comparing the environmental impact of stabilisers for unfired earth construction. Key Engineering Materials, 600(1), 132–143. https://doi.org/10.2966/scrip
  • Mendonça, A. C. S. (2020). Use of microbial biopolymer to decrease soil permeability by bioclogging. University of Coimbra.
  • Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: Processing, properties and food applications – A review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x
  • Muguda, S., Booth, S. J., Hughes, P. N., Augarde, C. E., Perlot, C., Bruno, A. W., & Gallipoli, D. (2017). Mechanical properties of biopolymer-stabilised soil-based construction materials. Géotechnique Letters, 7(4), 309–314. https://doi.org/10.1680/jgele.17.00081
  • Mwamufiya, I. M. (1998). Phase behavior and viscoelastic properties of high and low molecular weight guar mixtures with xanthan. Masters Thesis. Princeton University. http://arks.princeton.edu/ark:/88435/dsp013b5919057
  • Nugent, R. A., Zhang, G., & Gambrell, R. P. (2009). Effect of exopolymers on the liquid limit of clays and its Engineering implications. Transportation Research Record: Journal of the Transportation Research Board, 2101(1), 34–43. https://doi.org/10.3141/2101-05
  • NZS 4298. (1998) Materials and workmanship for earth buildings [Building Code Compliance Document E2 (AS2)] In New Zealand Technical Committee Standards New Zealand.
  • Olivier, J. G. J., & Peters, J. A. H. W. (2020). Trends in global CO2 and total greenhouse gas emissions: Report 2019 PBL Netherlands Environmental Assessment Agency 2020(February): 70. www.pbl.nl/en
  • Olivier, M., & Mesbah, A. (1987). Influence of different parameters on the resistance of earth, used as a building material. Mud Architecture November.
  • Qureshi, M. U., Chang, I., & Al-Sadarani, K. (2017). Strength and durability characteristics of biopolymer-treated desert sand. Geomechanics and Engineering, 12(5), 785–801. https://doi.org/10.12989/gae.2017.12.5.785
  • Reddy, J. J., & Varaprasad, B. J. S. (2021). Long-term and durability properties of xanthan gum treated dispersive soils – An eco-friendly material. Materials Today: Proceedings, 44, 309–314. https://doi.org/10.1016/j.matpr.2020.09.472
  • Shi, Q., Qin, B., Bi, Q., & Qu, B. (2018). Fly ash suspensions stabilized by hydroxypropyl guar gum and xanthan gum for retarding spontaneous combustion of coal. Combustion Science and Technology, 190(12), 2097–2110. https://doi.org/10.1080/00102202.2018.1491845
  • Soldo, A., Miletić, M., & Auad, M. L. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x
  • Stirling, R. A., Hughes, P., Davie, C. T., & Glendinning, S. (2015). Tensile behaviour of unsaturated compacted clay soils – A direct assessment method. Applied Clay Science, 112-113, 123–133. https://doi.org/10.1016/j.clay.2015.04.011
  • Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 57, 414–433. https://doi.org/10.1016/j.msec.2015.07.053
  • Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., Yallapu, M. M., & Sadiku, R. (2017). A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering: C, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
  • Venkatarama Reddy, B. V., & Jagadish, K. S. (1989). Properties of soil cement blocks masonry. Masonry International, 3(2), 80–84. https://www.masonry.org.uk/downloads/properties-of-soil-cement-block-masonry/
  • Xue, D., & Sethi, R. (2012). Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. Journal of Nanoparticle Research, 14(11), 1239. https://doi.org/10.1007/s11051-012-1239-0.