8,613
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Scan-to-BIM method in construction: assessment of the 3D buildings model accuracy in terms inventory measurements

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 859-880 | Received 17 Jul 2021, Accepted 23 Nov 2021, Published online: 27 Jan 2022

References

  • Achakir, F., Fkihi, S. E., & Mouaddib, E. M. (2021). Non-model-based approach for complete digitization by TLS or mobile scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 314–327. https://doi.org/10.1016/j.isprsjprs.2021.06.014
  • Al-Anzi, N. M. (2009). Workplace environment and its impact on employee performance [MBA thesis, submitted to Open University of Malaysia for the Degree of Master of Business Administration]. Open University of Malaysia.
  • Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionise spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. https://doi.org/10.1890/120150
  • Angulo-Fornos, R., & Castellano-Román, M. (2020). HBIM as support of preventive conservation actions in heritage architecture. Experience of the renaissance quadrant facade of the cathedral of Seville. Applied Sciences, 10(7), 2428. https://doi.org/10.3390/app10072428
  • Antón, D., Medjdoub, B., Shrahily, R., & Moyano, J. (2018). Accuracy evaluation of the semi-automatic 3D modeling for historical building information models. International Journal of Architectural Heritage, 12(5), 790–805. https://doi.org/10.1080/15583058.2017.1415391
  • Baik, A., Almaimani, A., Al-Amodi, M., & Rahaman, K. R. (2021). Applying digital methods for documenting heritage building in Old Jeddah: A case study of hazzazi house. Digital Applications in Archaeology and Cultural Heritage, 21, e00189. https://doi.org/10.1016/j.daach.2021.e00189
  • Bartoli, G., Betti, M., Bonora, V., Conti, A., Fiorini, L., Kovacevic, V. C., Tesi, V., & Tucci, G. (2020). From TLS data to FE model: A workflow for studying the dynamic behavior of the Pulpit by Giovanni Pisano in Pistoia (Italy). Procedia Structural Integrity, 29, 55–62. https://doi.org/10.1016/j.prostr.2020.11.139
  • Beshr, A. A. A., & Elnaga, I. M. A. (2011). Investigating the accuracy of digital levels and reflectorless total stations for purposes of geodetic engineering. Alexandria Engineering Journal, 50(4), 399–405. https://doi.org/10.1016/j.aej.2011.12.004
  • Bieda, A., Bydłosz, J., Warchoł, A., & Balawejder, M. (2020). Historical underground structures as 3D cadastral objects. Remote Sensing, 12(10), 1547. https://doi.org/10.3390/rs12101547
  • BIM PL standard. (2020). Polish association of construction employers (in Polish). https://www.uzp.gov.pl/__data/assets/pdf_file/0024/43449/BIM-Standard-wersja-opublikowana-2.0.pdf
  • Biolek, V., Hanak, T., & Hanak, M. (2019). Proposed interconnecting database for BIM models and construction-economic systems in the Czech Republic. IOP Conference Series: Materials Science and Engineering, 471(11), 112079. https://doi.org/10.1088/1757-899x/471/11/112079
  • Bochenska, A., Markiewicz, J., & Łapiński, S. (2019). The combination of the image and range-based 3d acquisition in archaeological and architectural research in the royal castle in Warsaw. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 177–184. https://doi.org/10.5194/isprs-archives-XLII-2-W15-177-2019
  • Brumana, R., Oreni, D., Barazzetti, L., Cuca, B., Previtali, M. & Banfi, F. (2020). Survey and Scan to BIM Model for the Knowledge of Built Heritage and the Management of Conservation Activities. In: Daniotti, B., Gianinetto, M., Della Torre, S. (Eds.), Digital transformation of the design, construction and management processes of the built environment. research for development (pp. 391–400). Springer. https://doi.org/10.1007/978-3-030-33570-0_35
  • Bruno, N., & Roncella, R. (2019). HBIM for conservation: A new proposal for information modeling. Remote Sensing, 11(15), 1751. https://doi.org/10.3390/rs11151751
  • Burdziakowski, P. (2017). Evaluation of open drone map toolkit for geodetic grade aerial drone mapping – case study. 17th International Multidisciplinary Scientific GeoConference SGEM Photogrammetry and Remote Sensing, 23, 101–109. https://doi.org/10.5593/sgem2017/23/s10.013
  • Cacciari, P. P., & Futai, M. M. (2017). Modeling a shallow rock tunnel using terrestrial laser scanning and discrete fracture networks. Rock Mechanics and Rock Engineering, 50(5), 1217–1242. https://doi.org/10.1007/s00603-017-1166-6
  • Carvalho, J. P., Bragança, L., & Mateus, R. (2021). Sustainable building design: Analysing the feasibility of BIM platforms to support practical building sustainability assessmen. Computers in Industry, 127, 103400. https://doi.org/10.1016/j.compind.2021.103400
  • Casazza, M., Lega, M., Jannelli, E., Minutillo, M., Jaffe, D., Severino, V., & Ulgiati, S. (2019). 3D monitoring and modelling of air quality for sustainable urban port planning: Review and perspectives. Journal of Cleaner Production, 231, 1342–1352. https://doi.org/10.1016/j.jclepro.2019.05.257
  • Chacón, R., Puig-Polo, C., & Real, E. (2021). TLS measurements of initial imperfections of steel frames for structural analysis within BIM-enabled platforms. Automation in Construction, 125, 103618. https://doi.org/10.1016/j.autcon.2021.103618
  • Chow, J. C. K., Lichti, D. D., & Teskey, W. F. (2012). Accuracy assessment of the Faro Focus3D and leica HDS6100 panoramic-type terrestrial laser scanners through point-based and plane-based user self-calibration. FIG Working Week.
  • Davidson, J., Fowler, J., Pantazis, C., Sannino, M., Walker, J., Sheikhkhoshkar, M., & Rahimian, F. P. (2020). Integration of VR with BIM to facilitate real-time creation of bill of quantities during the design phase: A proof of concept study. Frontiers of Engineering Management, 7(3), 396–403. https://doi.org/10.1007/s42524-019-0039-y
  • Dąbek, P. B., Żmuda, R., Szczepański, J., & Ćmielewski, B. (2018). Evaluation of water soil erosion processes in forest areas in the western sudetes using terrestrial laser scanning and GIS tools. E3S Web Conf. 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK, 44, 00026. https://doi.org/10.1051/e3sconf/20184400026
  • Depecke, P., Menezo, C., Virgone, J., & Lepers, S. (2001). Design of buildings shape and energetic consumption. Building and Environment, 36(5), 627–635. https://doi.org/10.1016/S0360-1323(00)00044-5
  • Duffy, J. P., Pratt, L., Anderson, K., Land, P. E., & Shutler, J. D. (2018). Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuarine, Coastal and Shelf Science, 200, 169–180. https://doi.org/10.1016/j.ecss.2017.11.001
  • EN 1990:2002/A1:2005/AC:2010 Eurocode. (2010). Basis of structural design. European Committee for Standardization.
  • Erdélyi, J., Kopáčik, A., & Kyrinovič, P. (2018). Construction control and documentation of facade elements using terrestrial laser scanning. Applied Geomatics, 10(2), 113–121. https://doi.org/10.1007/s12518-018-0208-4
  • Faltýnová, M., Matoušková, E., Šedina, J., & Pavelka, K. (2016). Building facade documentation using laser scanning and photogrammetry and data implementation into BIM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 215–220. https://doi.org/10.5194/isprs-archives-XLI-B3-215-2016
  • Feng, J., Luo, X., Gao, M., Abbas, A., Xu, Y. P., & Pouramini, S. (2021). Minimisation of energy consumption by building shape optimisation using an improved manta-Ray foraging optimization algorithm. Energy Reports, 7, 1068–1078. https://doi.org/10.1016/j.egyr.2021.02.028
  • Galiano-Garrigós, A., García-Figueroa, A., Rizo-Maestre, C., & González-Avilés, Á. (2019). Evaluation of BIM energy performance and CO2 emissions assessment tools: A case study in warm weather. Building Research & Information, 47(7), 787–812. https://doi.org/10.1080/09613218.2019.1620093
  • Gil, J., Beirão, J., Moutenegro, N., & Dunantie, J. (2010, September 15–18). Assessing computational tools for urban design: Towards a “city information model”. Future cities, 28th eCAADe conference (pp. 316–324).
  • Godek, K., & Krupiński, W. (2012). Proposal for a comprehensive study of electronic total station. Infrastructure and Ecology of Rural Areas, 2/II/2012, 219–232.
  • Grygierek, K., Ferdyn-Grygierek, J., Gumińska, A., Baran, Ł, Barwa, M., Czerw, K., Gowik, P., Makselan, K., Potyka, K., & Psikuta, A. (2020). Energy and environmental analysis of single-family houses located in Poland. Energies, 13(11), 2740. https://doi.org/10.3390/en13112740
  • Hamma-adama, M., & Kouider, T. (2019). Comparative analysis of BIM adoption efforts by developed countries as precedent for new adopter countries. Current Journal of Applied Science and Technology, 36(2), 1–15. https://doi.org/10.9734/cjast/2019/v36i230224
  • Helman, D., Bahat, I., Netzer, Y., Ben-Gal, A., Alchanatis, V., Peeters, A., & Cohen, Y. (2018). Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards. Remote Sensing, 10(10), 1615. https://doi.org/10.3390/rs10101615
  • Hlotov, V. M., & Kh, M. (2019). Accuracy investigation of point clouds with Faro Focus 3d S120 terrestrial laser scanner. Republican Interdepartmental Scientific and Technical Collection. Geodesy, Cartography, and Aerial Photography, 90(90), 41–49. https://doi.org/10.23939/istcgcap2019.90.041
  • Huang, J., Tang, Z., Liu, D., & He, J. (2020). Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Policy, 97, 104772. https://doi.org/10.1016/j.landusepol.2020.104772
  • Iqbal, Q. M. Z., & Chan, A. L. S. (2016). Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. Building and Environment, 101, 45–63. https://doi.org/10.1016/j.buildenv.2016.02.015
  • Janicka, J., Rapiński, J., Błaszczak-Bąk, W., & Suchocki, C. (2020). Application of the Msplit estimation method in the detection and dimensioning of the displacement of adjacent planes. Remote Sensing, 12(19), 3203. https://doi.org/10.3390/rs12193203
  • Jusuf, S. K., Mousseau, B., Godfroid, G., & Hui, V. S. J. (2017). Integrated modeling of CityGML and IFC for city/neighborhood development for urban microclimates analysis. Energy Procedia, 122, 145–150. https://doi.org/10.1016/j.egypro.2017.07.329
  • Juszczyk, M., Zima, K., & Lelek, W. (2019). Forecasting of sports fields construction costs aided by ensembles of neural networks. Journal of Civil Engineering and Management, 25(7), 715–729. https://doi.org/10.3846/jcem.2019.10534
  • Kaczmarek, I., Iwaniak, A., Świetlicka, A., Piwowarczyk, M., & Harvey, F. (2020). Spatial planning text information processing with use of machine learning methods. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VI-4/W2-2020, 95–102. https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-95-2020
  • Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2018). Unmanned aerial vehicle-based traffic analysis: A case study for shockwave identification and flow parameters estimation at signalized intersections. Remote Sensing, 10(3), 458. https://doi.org/10.3390/rs10030458
  • Kim, D., Kwon, S., Cho, C. S., de Soto, B. G., & Moon, D. (2020). Automatic space analysis using laser scanning and a 3D grid: Applications to industrial plant facilities. Sustainability, 12(21), 9087. https://doi.org/10.3390/su12219087
  • Klapa, B., Mitka, B., & Zygmunt, M. (2017). Application of integrated photogrammetric and terrestrial laser scanning data to cultural heritage surveying. IOP Conference Series: Earth and Environmental Science, 95, 032007. https://doi.org/10.1088/1755-1315/95/3/032007
  • Konior, J., & Szóstak, M. (2020). Methodology of planning the course of the cumulative cost curve in construction projects. Sustainability, 12(6), 2347. https://doi.org/10.3390/su12062347
  • Korumaz, M., Betti, M., Conti, A., Tucci, G., Bartoli, G., Bonora, V., Korumaz, A. G., & Fiorini, L. (2017). An integrated terrestrial laser scanner (TLS), deviation analysis (DA) and finite element (FE) approach for health assessment of historical structures. A minaret case study. Engineering Structures, 153, 224–238. https://doi.org/10.1016/j.engstruct.2017.10.026
  • Ku, H. H. (1966). Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards, 70C(4), 262.
  • Leśniak, A., Górka, M., & Skrzypczak, I. (2021). Barriers to BIM implementation in architecture, construction, and engineering projects—the Polish study. Energies, 14(8), 2090. https://doi.org/10.3390/en14082090
  • Li, J., Yang, B., Cong, Y., Cao, L., Fu, X., & Dong, Z. (2019). 3D forest mapping using a low-cost UAV laser scanning system: Investigation and comparison. Remote Sensing, 11(6), 717. https://doi.org/10.3390/rs11060717
  • Liu, Z., Lu, Y., Shen, M., & Peh, L. C. (2021). Transition from building information modeling (BIM) to integrated digital delivery (IDD) in sustainable building management: A knowledge discovery approach based review. Journal of Cleaner Production, 291, 125223. https://doi.org/10.1016/j.jclepro.2020.125223
  • López F., d. A., Ordóñez, C., Roca-Pardiñas, J., & García-Cortés, S. (2014). Point cloud comparison under uncertainty. Application to beam bridge measurement with terrestrial laser scanning. Measurement, 51, 259–264. https://doi.org/10.1016/j.measurement.2014.02.013
  • Lõhmus, H., Ellmann, A., Märdla, S., & Idnurm, S. (2018). Terrestrial laser scanning for the monitoring of bridge load tests – two case studies. Survey Review, 50(360), 270–284. https://doi.org/10.1080/00396265.2016.1266117
  • Luttun, J., & Krijnen, T. (2020, August 18–20). An approach for data extraction, validation and correction using geometrical algorithms and model view definitions on building models. International Conference on Computing in Civil and Building Engineering ICCCBE 2020: Proceedings of the 18th International Conference on Computing in Civil and Building Engineering (pp. 529–543). https://doi.org/10.1007/978-3-030-51295-8_38
  • Maalek, R., Lichti, D. D., & Ruwanpura, J. Y. (2018). Robust segmentation of planar and linear features of terrestrial laser scanner point clouds acquired from construction sites. Sensors, 18(3), 819. https://doi.org/10.3390/s18030819
  • Maalek, R., & Sadeghpour, F. (2013). Accuracy assessment of ultra-wide band technology in tracking static resources in indoor construction scenarios. Automation in Construction, 30, 170–183. https://doi.org/10.1016/j.autcon.2012.10.005
  • Mielby, S., & Sandersen, P. B. E. (2017). Development of a 3D geological/hydrogeological model targeted at sustainable management of the urban water cycle in Odense City, Denmark. Procedia Engineering, 209, 75–82. https://doi.org/10.1016/j.proeng.2017.11.132
  • Mikrut, S., & Głowienka, E. (2015). Fotogrametria i skaning laserowy w modelowaniu 3D. Wyższa Szkoła Inżynieryjno-Ekonomiczna z siedzibą w Rzeszowie, Rzeszów.
  • Mitka, B., Klapa, P., & Gniadek, J. (2019). Use of terrestrial laser scanning for measurements of wind power stations. Geomatics and Environmental Engineering, 13(1), 39–49. https://doi.org/10.7494/geom.2019.13.1.39
  • Moon, D., Chung, S., Kwon, S., Seo, J., & Shin, J. (2019). Comparison and utilisation of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction, 98, 322–333. https://doi.org/10.1016/j.autcon.2018.07.020
  • Moyano, J., Nieto-Julián, J. E., Lenin, L. M., & Bruno, S. (2021). Operability of point cloud data in an architectural heritage information model. International Journal of Architectural Heritage, https://doi.org/10.1080/15583058.2021.1900951
  • Noardo, F., Ohori, K. A., Biljecki, F., Krijnen, T., Ellul, C., Harrie, L., & Stoter, J. (2019). GeoBIM benchmark 2019: Design and initial results. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 1339–1346. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1339-2019
  • Nowogońska, B. (2019). Diagnoses in the aging process of residential buildings constructed using traditional technology. Buildings, 9(5), 1269. https://doi.org/10.3390/buildings9050126
  • Olsen, M. J., Chen, Z., Hutchinson, T., & Kuester, F. (2013). Optical techniques for multiscale damage assessment. Geomatics, Natural Hazards and Risk, 4(1), 49–70. https://doi.org/10.1080/19475705.2012.670668
  • Olsson, P. O., Axelsson, J., Hooper, M., & Harrie, L. (2018). Automation of building permission by integration of BIM and geospatial data. ISPRS International Journal of Geo-Information, 7(8), 307. https://doi.org/10.3390/ijgi7080307
  • Park, J. H., & Lee, G. (2017). Design coordination strategies in a 2D and BIM mixed-project environment: Social dynamics and productivity. Building Research & Information, 45(6), 631–648. https://doi.org/10.1080/09613218.2017.1288998
  • Price, S. J., Terrington, R. L., Busby, J., Bricker, S., & Berry, T. (2018). 3D ground-use optimisation for sustainable urban development planning: A case-study from earls court, London, UK. Tunnelling and Underground Space Technology, 81, 144–164. https://doi.org/10.1016/j.tust.2018.06.025
  • Qiu, Q., Zhou, X., Zhao, J., Yang, Y., Tian, S., Wang, J., Liu, J., & Liu, H. (2021). From sketch BIM to design BIM: An element identification approach using industry foundation classes and object recognition. Building and Environment, 188, 107423. https://doi.org/10.1016/j.buildenv.2020.107423
  • Rebolj, D., Pučko, Z., Babič, NČ, Bizjak, M., & Mongus, D. (2017). Point cloud quality requirements for scan-vs-BIM based automated construction progress monitoring. Automation in Construction, 84, 323–334. https://doi.org/10.1016/j.autcon.2017.09.021
  • Reinoso, J. F., Gonçalves, J. E., Pereira, C., & Bleninger, T. (2018). Cartography for civil engineering projects: Photogrammetry supported by unmanned aerial vehicles. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42(1), 91–96. https://doi.org/10.1007/s40996-017-0076-x
  • Remondino, F. (2011). Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sensing, 3(6), 1104–1138. https://doi.org/10.3390/rs3061104
  • Rocha, G., Mateus, L., Fernández, J., & Ferreira, V. (2020). A scan-to-BIM methodology applied to heritage buildings. Heritage, 3(1), 47–67. https://doi.org/10.3390/heritage3010004
  • Rua, H., Falcao, A. P., & Roxo, A. F. (2013, September 18–20). Digital modelsproposal for the interactive representation of urban centres the downtown Lisbon city engine model. Computation and performance, Proceedings of the 31st eCAADe conferencex, 1 (pp. 265–273).
  • Sánchez-Aparicio, L. J., Del Pozo, S., Ramos, L. F., Arce, A., & Fernandes, F. M. (2018). Heritage site preservation with combined radiometric and geometric analysis of TLS data. Automation in Construction, 85, 24–39. https://doi.org/10.1016/j.autcon.2017.09.023
  • Sepasgozaara, S. M. E., Shirowzhanb, S., & Wang, C. (2017). A scanner technology acceptance model for construction projects. Procedia Engineering, 180, 1237–1246. https://doi.org/10.1016/j.proeng.2017.04.285
  • Shih, N. J. (2002, September 23–25). An application of a 3D scanner in the representation of building construction site. International symposium on Automation and robotics in construction, 19th (ISARC), proceedings, Gaithersburg (pp. 337–342). National Institute of Standards and Technology.
  • Smaczyński, M., & Horbiński, T. (2021). Creating 3D model of the existing historical topographic object based on low-level aerial imagery. KN – Journal of Cartography and Geographic Information, 71(1), 33–43. https://doi.org/10.1007/s42489-020-00061-0
  • Souza, L., & Bueno, C. (2022). City information modelling as a support decision tool for planning and management of cities: A systematic literature review and bibliometric analysis. Building and Environment, 207(A), 108403. https://doi.org/10.1016/j.buildenv.2021.108403
  • Suchocki, C., & Katzer, J. (2018). Terrestrial laser scanning harnessed for moisture detection in building materials – problems and limitations. Automation in Construction, 94, 127–134. https://doi.org/10.1016/j.autcon.2018.06.010
  • Sztubecka, M., & Sztubecki, J. (2016). Analysis of the acoustic climate of a spa park using the fuzzy set theory. Open Engineering, 6(1), 498–503. https://doi.org/10.1515/eng-2016-0068
  • Török, Á, Bögöly, G., Somogyi, Á, & Lovas, T. (2020). Application of UAV in topographic modelling and structural geological mapping of quarries and their surroundings – delineation of fault-bordered raw material reserves. Sensors, 20(2), 489. https://doi.org/10.3390/s20020489
  • Utica, G., Pinti, V., Guzzoni, L., Bonelli, S., & Brizzolari, A. (2017). Integrating laser scanner and BIM for conservation and reuse: ‘the lyric theatre of milan’. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-5/W1, 77–82. https://doi.org/10.5194/isprs-annals-IV-5-W1-77-2017
  • Valença, J., Puente, I., Júlio, E. N. B. S., González-Jorge, H., & Arias-Sánchez, P. (2017). Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Construction and Building Materials, 146, 668–678. https://doi.org/10.1016/j.conbuildmat.2017.04.096
  • van Eldik, M. A., Vahdatikhaki, F., dos Santos, J. M. O., Visser, M., & Doree, A. (2020). BIM-based environmental imapct assessment for infrastructure design projects. Automation in Construction, 120, 103379. https://doi.org/10.1016/j.autcon.2020.103379
  • Vilutiene, T., Kalibatiene, D., Hosseini, M. R., Pellicer, E., & Zavadskas, E. K. (2019). Building information modeling (BIM) for structural engineering: A bibliometric analysis of the literature. Advances in Civil Engineering, 2019, 5290690. https://doi.org/10.1155/2019/5290690
  • Volk, R., Stengel, J., & Schultmann, F. (2014). Building information modeling (BIM) for existing buildings—literature review and future needs. Automation in Construction, 38, 109–127. https://doi.org/10.1016/j.autcon.2013.10.023
  • Wang, C., Wen, C., Dai, Y., Yu, S., & Liu, M. (2020). Urban 3D modeling with mobile laser scanning: A review. Virtual Reality & Intelligent Hardware, 2(3), 175–212. https://doi.org/10.1016/j.vrih.2020.05.003
  • Wang, H., Pan, Y., & Luo, X. (2019). Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. Automation in Construction, 103, 41–52. https://doi.org/10.1016/j.autcon.2019.03.005
  • Wang, J., Qin, Q., & Bai, Z. (2018). Characterising the effects of opencast coal-mining and land reclamation on soil macropore distribution characteristics using 3D CT scanning. Catena, 171, 212–221. https://doi.org/10.1016/j.catena.2018.07.022
  • Wang, M., Wang, C. C., Sepasgozar, S., & Zlatanova, S. (2020). A systematic review of digital technology adoption in off-site construction: Current status and future direction towards Industry 4.0. Buildings, 10(11), 204. https://doi.org/10.3390/buildings10110204
  • Warchoł, A. (2015). Analysis of possibilities to registration TLS point clouds without targets on the example of the castle bridge in rzeszow. Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM, 1, 737–742. https://doi.org/10.5593/SGEM2015/B11/S4.094
  • Xu, H., Li, H., Yang, X., Qi, S., & Zhou, J. (2019). Integration of terrestrial laser scanning and nurbs modeling for the deformation monitoring of an earth-rock dam. Sensors, 19(1), 22. https://doi.org/10.3390/s19010022
  • Xu, Z., & Coors, V. (2012). Combining system dynamics model, GIS and 3D visualization in sustainability assessment of urban residential development. Building and Environment, 47, 272–287. https://doi.org/10.1016/j.buildenv.2011.07.012
  • Ye, C., Li, J., Jiang, H., Zhao, H., Ma, L., & Chapman, M. (2019). Semi-automated generation of road transition lines using mobile laser scanning data. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1877–1890. https://doi.org/10.1109/TITS.2019.2904735
  • Yin, X., Liu, H., Chen, Y., & Al-Hussein, M. (2019). Building information modelling for off-site construction: Review and future directions. Automation in Construction, 101, 72–91. https://doi.org/10.1016/j.autcon.2019.01.010
  • Zheng, T., Li, B., Li, X. B., Wang, Z., Li, S. Y., & Peng, Z. R. (2021). Vertical and horizontal distributions of traffic-related pollutants beside an urban arterial road based on unmanned aerial vehicle observations. Building and Environment, 187, 107401. https://doi.org/10.1016/j.buildenv.2020.107401