277
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On the effectiveness of passive controls for summer thermal comfort in highly insulated dwellings

, , , &
Pages 311-331 | Received 08 Mar 2023, Accepted 14 Jul 2023, Published online: 31 Jul 2023

References

  • Adekunle, T. O., & Nikolopoulou, M. (2016). Thermal comfort, summertime temperatures and overheating in prefabricated timber housing. Building and Environment, 103, 21–35. https://doi.org/10.1016/j.buildenv.2016.04.001
  • Ademe & Coda-strategies. (2021). La climatisation de confort dans les bâtiments résidentiels et tertiaires. Etat des Lieux 2020 – Synthèse. https://librairie.ademe.fr/
  • Anfrie, M., Cassilde, S., Gobert, O., Kryvobokov, M., & Pradella, S. (2017). Chiffres clés du logement en Wallonie – Troisième édition. http://bib.urbagora.be/IMG/pdf/201401_EQH_resultats_cles.pdf
  • Attia, S., & Gobin, C. (2020). Climate change effects on Belgian households: A case study of a nearly zero energy building. Energies, 13(20), 5357. https://doi.org/10.3390/en13205357
  • BBRI, K. e.-T. M. (2022). Sustainable cooling systems - project. https://www.cornet-scools.com/slotevent-scools.html;https://www.energieberekeningen.com/scools#/
  • Beizaee, A., Lomas, K. J., & Firth, S. K. (2013). National survey of summertime temperatures and overheating risk in English homes. Building and Environment, 65, 1–17. https://doi.org/10.1016/j.buildenv.2013.03.011
  • Bernard, A. M., Labaume, D., Piot, N. & Litvak, A. (2018). Surventilation et confort d'été: Guide de conception. France: ADEME.
  • Chan, H.-Y., Riffat, S. B., & Zhu, J. (2010). Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews, 14(2), 781–789. https://doi.org/10.1016/j.rser.2009.10.030
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
  • Dartevelle, O., Deneyer, A., & Bodart, M. (2015, November 3–4). Comparing the efficiency of common solar shading devices in reducing building cooling needs. 10th conference on advanced building skins. http://hdl.handle.net/2078.1/166347
  • Dartevelle, O., & Vanwelde, V. (2018). MEsures de performAnces réelles et de Satisfaction des occUpants dans les bâtiments Résidentiels à hautes performances Energétiques: rapport de synthèse sur le climat intérieur. http://hdl.handle.net/2078.1/198816
  • de Dear, R., Kim, J., & Parkinson, T. (2018). Residential adaptive comfort in a humid subtropical climate – Sydney Australia. Energy and Buildings, 158, 1296–1305. https://doi.org/10.1016/j.enbuild.2017.11.028
  • de Dear, R., Xiong, J., Kim, J., & Cao, B. (2020). A review of adaptive thermal comfort research since 1998. Energy and Buildings, 214, 109893. https://doi.org/10.1016/j.enbuild.2020.109893
  • De Pauw, M., & Van der Veken, J. (2022, May 22–25). Summer comfort in residential buildings and small offices, using sustainable cooling systems. CLIMA 2022: The 14th REHVA HVAC World Congress, Rotterdam, The Netherlands.
  • Dodoo, A., & Gustavsson, L. (2016). Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios. Energy, 97, 534–548. https://doi.org/10.1016/j.energy.2015.12.086
  • Encinas, F., & De Herde, A. (2013). Sensitivity analysis in building performance simulation for summer comfort assessment of apartments from the real estate market. Energy and Buildings, 65, 55–65. https://doi.org/10.1016/j.enbuild.2013.05.047
  • European Commission. (2014). HORIZON 2020 – work programme 2014-2015 - general annexes. In: European Commission Decision C (2014)4995 of 22 July 2014.
  • European Parliament (2018). Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Official Journal of the European Union. http://data.europa.eu/eli/dir/2018/844/oj
  • European Commission, Directorate-General for Energy (2021). Proposal for a directive of the European Parliament and of the Council on the energy performance of buildings. Retrieved July 24, 2023, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021PC0802
  • Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R (Vol. 3). London: Sage.
  • Figueiredo, A., Kämpf, J., & Vicente, R. (2016). Passive house optimization for Portugal: Overheating evaluation and energy performance. Energy and Buildings, 118, 181–196. https://doi.org/10.1016/j.enbuild.2016.02.034
  • Fisher, R. A. (1922). On the interpretation of χ 2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94. https://doi.org/10.2307/2340521
  • Fletcher, M. J., Johnston, D. K., Glew, D. W., & Parker, J. M. (2017). An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Building and Environment, 121, 106–118. https://doi.org/10.1016/j.buildenv.2017.05.024
  • Fokaides, P. A., Christoforou, E., Ilic, M., & Papadopoulos, A. (2016). Performance of a Passive House under subtropical climatic conditions. Energy and Buildings, 133, 14–31. https://doi.org/10.1016/j.enbuild.2016.09.060
  • Gamero-Salinas, J. C., Monge-Barrio, A., & Sánchez-Ostiz, A. (2020). Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate. Building and Environment, 171, 106664. https://doi.org/10.1016/j.buildenv.2020.106664
  • Gouvernement wallon. (2008). Arrêté du Gouvernement wallon déterminant la méthode de calcul et les exigences, les agréments et les sanctions applicables en matière de performance énergétique et de climat intérieur des bâtiments. https://wallex.wallonie.be/index.php?doc=11238&rev=10633-15204
  • Hamdy, M., Carlucci, S., Hoes, P.-J., & Hensen, J. L. M. (2017). The impact of climate change on the overheating risk in dwellings – a Dutch case study. Building and Environment, 122, 307–323. https://doi.org/10.1016/j.buildenv.2017.06.031
  • Harkouss, F., Fardoun, F., & Biwole, P. H. (2018). Passive design optimization of low energy buildings in different climates. Energy, 165, 591–613. https://doi.org/10.1016/j.energy.2018.09.019
  • Heracleous, C., & Michael, A. (2018). Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions. Energy, 165, 1228–1239. https://doi.org/10.1016/j.energy.2018.10.051
  • Johra, H., Heiselberg, P. K., & Dréau, J. L. (2017). Numerical analysis of the impact of thermal inertia from the furniture / indoor content and phase change materials on the building energy flexibility. International Building Performance Simulation Association.
  • Jones, R. V., Goodhew, S., & de Wilde, P. (2016). Measured indoor temperatures, thermal comfort and overheating risk: Post-occupancy evaluation of Low energy houses in the UK. Energy Procedia, 88, 714–720. https://doi.org/10.1016/j.egypro.2016.06.049
  • Kisilewicz, T. (2015). Passive control of indoor climate conditions in low energy buildings. Energy Procedia, 78, 49–54. https://doi.org/10.1016/j.egypro.2015.11.113
  • Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale Dell'Instituto Italiano Degli Attuari, 4, 83–91.
  • Kuczyński, T., Staszczuk, A., Gortych, M., & Stryjski, R. (2021). Effect of thermal mass, night ventilation and window shading on summer thermal comfort of buildings in a temperate climate. Building and Environment, 204, 108126. https://doi.org/10.1016/j.buildenv.2021.108126
  • Kuczyński, T., Staszczuk, A., Ziembicki, P., & Paluszak, A. (2021). The effect of the thermal mass of the building envelope on summer overheating of dwellings in a temperate climate. Energies, 14(14), 4117. https://doi.org/10.3390/en14144117
  • Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X., & Singh, P. (2021). Secure and energy-efficient smart building architecture with emerging technology IoT. Computer Communications, 176, 207–217. https://doi.org/10.1016/j.comcom.2021.06.003
  • Li, C., Zhu, H., Lian, X., Liu, Y., Li, X., & Feng, Y. (2022). Study of ‘time-lag’ of occupant behavior occurrences for establishing an occupant-centric building control system. Building and Environment, 216, 109005. https://doi.org/10.1016/j.buildenv.2022.109005
  • Li, P., Froese, T. M., & Brager, G. (2018). Post-occupancy evaluation: State-of-the-art analysis and state-of-the-practice review. Building and Environment, 133, 187–202. https://doi.org/10.1016/j.buildenv.2018.02.024
  • Limesurvey GmbH. (2006–2023). LimeSurvey: An open source survey tool. In Limesurvey GmbH. http://www.limesurvey.org
  • Lomas, K. J., & Kane, T. (2013). Summertime temperatures and thermal comfort in UK homes. Building Research & Information, 41(3), 259–280. https://doi.org/10.1080/09613218.2013.757886
  • Mavrogianni, A., Pathan, A., Oikonomou, E., Biddulph, P., Symonds, P., & Davies, M. (2017). Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(1-2), 119–142. https://doi.org/10.1080/09613218.2016.1208431
  • McLeod, R. S., Hopfe, C. J., & Kwan, A. (2013). An investigation into future performance and overheating risks in Passivhaus dwellings. Building and Environment, 70, 189–209. https://doi.org/10.1016/j.buildenv.2013.08.024
  • McLeod, R. S., & Swainson, M. (2017). Chronic overheating in low carbon urban developments in a temperate climate. Renewable and Sustainable Energy Reviews, 74, 201–220. https://doi.org/10.1016/j.rser.2016.09.106
  • Mhuireach, GÁ, Brown, G. Z., Kline, J., Manandhar, D., Moriyama, M., Northcutt, D., Rivera, I., & Van Den Wymelenberg, K. (2020). Lessons learned from implementing night ventilation of mass in a next-generation smart building. Energy and Buildings, 207, 109547. https://doi.org/10.1016/j.enbuild.2019.109547
  • Mlakar, J., & Štrancar, J. (2011). Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings, 43(6), 1443–1451. https://doi.org/10.1016/j.enbuild.2011.02.008
  • NBN. (2019). EN 16798-1:2019 Performance énergétique des bâtiments – Ventilation des bâtiments. In Partie 1: Données d’entrées d'ambiance intérieure pour la conception et l'évaluation de la performance énergétique des bâtiments couvrant la qualité de l'air intérieur, l'ambiance thermique, l'éclairage et l'acoustique (Module M1-6).
  • O'Brien, W., & Tahmasebi, F. (2023). Occupant-Centric Simulation-Aided Building Design. https://doi.org/10.1201/9781003176985
  • Ortiz, M., Itard, L., & Bluyssen, P. M. (2020). Indoor environmental quality related risk factors with energy-efficient retrofitting of housing: A literature review. Energy and Buildings, 221, 110102. https://doi.org/10.1016/j.enbuild.2020.110102
  • Ouzeau, G., Soubeyroux, J. M., Schneider, M., Vautard, R., & Planton, S. (2016). Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Climate Services, 4, 1–12. https://doi.org/10.1016/j.cliser.2016.09.002
  • Ozarisoy, B., & Elsharkawy, H. (2019). Assessing overheating risk and thermal comfort in state-of-the-art prototype houses that combat exacerbated climate change in UK. Energy and Buildings, 187, 201–217. https://doi.org/10.1016/j.enbuild.2019.01.030
  • Pathan, A., Mavrogianni, A., Summerfield, A., Oreszczyn, T., & Davies, M. (2017). Monitoring summer indoor overheating in the London housing stock. Energy and Buildings, 141, 361–378. https://doi.org/10.1016/j.enbuild.2017.02.049
  • Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157–175. https://doi.org/10.1080/14786440009463897
  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  • Peeters, L., de Dear, R., Hensen, J., & D’haeseleer, W. (2009). Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 86(5), 772–780. https://doi.org/10.1016/j.apenergy.2008.07.011
  • Plate-forme Maison Passive. (2020). Les critères du passif. https://www.maisonpassive.be/le-passif-en-belgique/les-criteres-du-passif/pour-le-residentiel-neuf/
  • Pomfret, L., & Hashemi, A. (2017). Thermal comfort in zero energy buildings. Energy Procedia, 134, 825–834. https://doi.org/10.1016/j.egypro.2017.09.536
  • Porritt, S. M., Cropper, P. C., Shao, L., & Goodier, C. I. (2012). Ranking of interventions to reduce dwelling overheating during heat waves. Energy and Buildings, 55, 16–27. https://doi.org/10.1016/j.enbuild.2012.01.043
  • Rahif, R., Amaripadath, D., & Attia, S. (2021). Review on time-integrated overheating evaluation methods for residential buildings in temperate climates of Europe. Energy and Buildings, 252, 111463. https://doi.org/10.1016/j.enbuild.2021.111463
  • Rahif, R., Norouziasas, A., Elnagar, E., Doutreloup, S., Pourkiaei, S. M., Amaripadath, D., Romain, A.-C., Fettweis, X., & Attia, S. (2022). Impact of climate change on nearly zero-energy dwelling in temperate climate: Time-integrated discomfort, HVAC energy performance, and GHG emissions. Building and Environment, 223, 109397. https://doi.org/10.1016/j.buildenv.2022.109397
  • Reckwitz, A. (2002). Toward a theory of social practices. European Journal of Social Theory, 5(2), 243–263. https://doi.org/10.1177/13684310222225432
  • Rogers, E. M. (2003). Diffusion of innovations. (5th ed.) Free Press. https://books.google.be/books?id=9U1K5LjUOwEC
  • Rohdin, P., Molin, A., & Moshfegh, B. (2014). Experiences from nine passive houses in Sweden – Indoor thermal environment and energy use. Building and Environment, 71, 176–185. https://doi.org/10.1016/j.buildenv.2013.09.017
  • Rosenthal, R. (1991). Meta-Analytic procedures for social research (2nd ed.). Sage.
  • Royal Meteorological Institute of Belgium. (2017). Bilan climatologique annuel 2016. https://www.meteo.be/resources/climateReportWeb/bilan_climatologique_annuel_2016.pdf
  • Schatzki, T. R. (1996). Social practices: A Wittgensteinian approach to human activity and the social. Cambridge University Press. https://books.google.be/books?id = KYgbUegR3AMC
  • Sharifi, S., Saman, W., & Alemu, A. (2019). Identification of overheating in the top floors of energy-efficient multilevel dwellings. Energy and Buildings, 204, 109452. https://doi.org/10.1016/j.enbuild.2019.109452
  • Shove, E. (2003). Comfort, cleanliness and convenience: The social organization of normality. Berg Publishers. https://books.google.be/books?id=PP_xwAEACAAJ
  • Shove, E., Pantzar, M., & Watson, M. (2012). The dynamics of social practice: Everyday life and how it changes. SAGE Publications. https://books.google.be/books?id = L-ILf3b9P-AC
  • Singh, M. K., Mahapatra, S., & Teller, J. (2014). Relation between indoor thermal environment and renovation in Liege residential buildings. Thermal Science, 18(3), 889–902. https://doi.org/10.2298/TSCI1403889S
  • Smirnov, N. V. (1939). Estimate of deviation between empirical distribution functions in two independent samples. Bulletin Moscow University, 2(2), 3–16.
  • Sorgato, M. J., Melo, A. P., & Lamberts, R. (2016). The effect of window opening ventilation control on residential building energy consumption. Energy and Buildings, 133, 1–13. https://doi.org/10.1016/j.enbuild.2016.09.059
  • Staepels, L., Verbeeck, G., Bauwens, G., Deconinck, A.-H., Roels, S., & Van Gelder, L. (2013). BEP2020: betrouwbare energieprestaties van woningen. Naar een robuuste en gebruikersonafhankelijke performantie.
  • Tabatabaei Sameni, S. M., Gaterell, M., Montazami, A., & Ahmed, A. (2015). Overheating investigation in UK social housing flats built to the Passivhaus standard. Building and Environment, 92, 222–235. https://doi.org/10.1016/j.buildenv.2015.03.030
  • Tillson, A.-A., Oreszczyn, T., & Palmer, J. (2013). Assessing impacts of summertime overheating: some adaptation strategies. Building Research & Information, 41(6), 652–661. https://doi.org/10.1080/09613218.2013.808864
  • Tink, V., Porritt, S., Allinson, D., & Loveday, D. (2018). Measuring and mitigating overheating risk in solid wall dwellings retrofitted with internal wall insulation. Building and Environment, 141, 247–261. https://doi.org/10.1016/j.buildenv.2018.05.062
  • Toledo, L., Cropper, P. C., & Wright, A. J. (2016, July 11-13). Unintended consequences of sustainable architecture: Evaluating overheating risks in new dwellings. 32th international conference on passive and Low energy architecture. Cities, buildings, people: Towards regenerative environments – PLEA 2016, Los Angeles.
  • van Hooff, T., Blocken, B., Hensen, J. L. M., & Timmermans, H. J. P. (2015). Reprint of: On the predicted effectiveness of climate adaptation measures for residential buildings. Building and Environment, 83, 142–158. https://doi.org/10.1016/j.buildenv.2014.10.006
  • Verbeke, S., & Audenaert, A. (2018). Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews, 82, 2300–2318. https://doi.org/10.1016/j.rser.2017.08.083
  • Weng, K. (2017). Performance of UK dwellings in projected future climates. Energy Procedia, 105, 3727–3732. https://doi.org/10.1016/j.egypro.2017.03.864
  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. https://doi.org/10.2307/3001968
  • World Health Organization. (2004). Health and global environmental change. Heat-waves: Risks and responses. (Series 2, Issue. http://www.euro.who.int/__data/assets/pdf_file/0008/96965/E82629.pdf
  • Yan, D., & Hong, T. (2018). EBC Annex 66 final report – definition and simulation of occupant behavior in buildings (ISBN 978-0-9996964-7-7).
  • Yang, Y., Javanroodi, K., & Nik, V. M. (2021). Climate change and energy performance of European residential building stocks – a comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment. Applied Energy, 298, 117246. https://doi.org/10.1016/j.apenergy.2021.117246
  • Yannas, S., & Rodríguez-Álvarez, J. (2020). Domestic overheating in a temperate climate: Feedback from London residential schemes. Sustainable Cities and Society, 59, 102189. https://doi.org/10.1016/j.scs.2020.102189
  • Zhang, C., Kazanci, O. B., Levinson, R., Heiselberg, P., Olesen, B. W., Chiesa, G., Sodagar, B., Ai, Z., Selkowitz, S., Zinzi, M., Mahdavi, A., Teufl, H., Kolokotroni, M., Salvati, A., Bozonnet, E., Chtioui, F., Salagnac, P., & Rahif, R. (2021). Resilient cooling strategies – a critical review and qualitative assessment. Energy and Buildings, 251, 111312. https://doi.org/10.1016/j.enbuild.2021.111312
  • Zinzi, M., Pagliaro, F., Agnoli, S., Bisegna, F., & Iatauro, D. (2017). Assessing the overheating risks in Italian existing school buildings renovated with nZEB targets. Energy Procedia, 142, 2517–2524. https://doi.org/10.1016/j.egypro.2017.12.192

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.