1,181
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Overheating assessment for apartments during average and hot summers in the Nordic climate

, , , , &
Pages 273-291 | Received 21 Mar 2023, Accepted 23 Aug 2023, Published online: 05 Sep 2023

References

  • American Society of Heating Refrigerating and Air-Conditioning Engineers. (2020). ASHRAE, ASHRAE/ANSI Standard 55-2010 Thermal environmental conditions for human occupancy.
  • Attia, S., Benzidane, C., Rahif, R., Amaripadath, D., Hamdy, M., Holzer, P., Koch, A., Maas, A., Moosberger, S., Petersen, S., Mavrogianni, A., Maria Hidalgo-Betanzos, J., Almeida, M., Akander, J., Khosravi Bakhtiari, H., Kinnane, O., Kosonen, R., & Carlucci, S. (2023). Overheating calculation methods, criteria, and indicators in European regulation for residential buildings. Energy and Buildings, 292, 113170. https://doi.org/10.1016/j.enbuild.2023.113170
  • Attia, S., & Gobin, C. (2020). Climate change effects on Belgian households: A case study of a nearly zero energy building. Energies. 13(20), 20. https://doi.org/10.3390/en13205357
  • Baborska-Narożny, M., Stevenson, F., & Grudzińska, M. (2017). Overheating in retrofitted flats: Occupant practices, learning and interventions. Building Research & Information, 45(1-2), 40–59. https://doi.org/10.1080/09613218.2016.1226671
  • Barbosa, R., Vicente, R., & Santos, R. (2015). Climate change and thermal comfort in Southern Europe housing: A case study from Lisbon. Building and Environment, 92, 440–451. https://doi.org/10.1016/j.buildenv.2015.05.019
  • Beizaee, A., Lomas, K. J., & Firth, S. K. (2013). National survey of summertime temperatures and overheating risk in English homes. Building and Environment, 65, 1–17. https://doi.org/10.1016/j.buildenv.2013.03.011
  • Birchmore, R., Davies, K., Etherington, P., Tait, R., & Pivac, A. (2017). Overheating in Auckland homes: Testing and interventions in full-scale and simulated houses. Building Research & Information, 45(1-2), 157–175. https://doi.org/10.1080/09613218.2017.1232857
  • C 1-4 National building code of Finland. (1976). C 1-4 National building code of Finland. Ääneneristys - Veden ja kosteudeneristys – Lämmöneristys - Lämmönläpäisykertoimen määritys ja eristystyön suoritus (Sound insulation - Water and moisture insulation - Thermal insulation - Determination of heat tran. Ministry of the Interior. Helsinki. https://www.edilex.fi/data/rakentamismaaraykset/C1_4_1976_fi.pdf
  • The Chartered Institution of Building Services Engineers, & TM52., (CIBSE). (2017). (CIBSE) TM52. The limits of thermal comfort: avoiding overheating in European buildings.
  • City of Helsinki. (2022). Helsinki facts and figures 2022 (p. 48). City Executive Office, Urban Research and Statistics. https://www.hel.fi/hel2/tietokeskus/julkaisut/pdf/22_06_15_Helsinki_facts_and_figures_2022.pdf
  • D2 National building code of Finland. Indoor Climate and Ventilation of Buildings. (2003). Ministry of the Environment. https://www.edilex.fi/data/rakentamismaaraykset/d2e.pdf
  • D3 National building code of Finland. Rakennusten energiatehokkuus (Energy efficiency of buildings). (2012). Ministry of environment. https://www.edilex.fi/data/rakentamismaaraykset/D3-2012_S.pdf
  • Decree of Ministry of the Environment Finland. (2002). C3 national building code of Finland - thermal insulation in a building. In National Building Code of Finland. Ministry of the Environment. https://www.edilex.fi/data/rakentamismaaraykset/c3e_2003.pdf
  • Dodoo, A., & Gustavsson, L. (2016). Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios. Energy, 97, 534–548. https://doi.org/10.1016/j.energy.2015.12.086
  • Farahani, A. V., Jokisalo, J., Korhonen, N., Jylhä, K., Ruosteenoja, K., & Kosonen, R. (2021). Overheating risk and energy demand of nordic old and new apartment buildings during average and extreme weather conditions under a changing climate. Applied Sciences (Switzerland), 11(9), 3972. https://doi.org/10.3390/app11093972
  • Field, A. (2017). Discovering statistics using IBM SPSS statistics (5th ed.). University of Sussex, UK.
  • Finnish Meteorological Institute (FMI). (2021). Heat statistics (in Finnish). https://www.ilmatieteenlaitos.fi/helletilastot
  • Finnish Meteorological Institute (FMI). (2023). helletilastot.https://www.ilmatieteenlaitos.fi/helletilastot
  • Gupta, R., & Gregg, M. (2020). Assessing the magnitude and likely causes of summertime overheating in modern flats in UK. Energies, 13(19), 5202. https://doi.org/10.3390/en13195202
  • He, C., Ma, L., Zhou, L., Kan, H. D., Zhang, Y., Ma, W. C., & Chen, B. (2019 April). Exploring the mechanisms of heat wave vulnerability at the urban scale based on the application of big data and artificial societies. Environment International, 127, 573–583. https://doi.org/10.1016/j.envint.2019.01.057
  • Homack, S. R. (2001). Understanding what ANOVA post hoc tests are, really. Annual Meeting of the Southwest Educational Research Association, 1–15. https://files.eric.ed.gov/fulltext/ED449222.pdf
  • Kalvelage, K., Passe, U., Rabideau, S., & Takle, E. S. (2014). Changing climate: The effects on energy demand and human comfort. Energy and Buildings, 76, 373–380. https://doi.org/10.1016/j.enbuild.2014.03.009
  • Kim, S., Sinclair, V. A., Räisänena, J., & Ruuhelac, R. (2018). Heat waves in Finland: Present and projected summertime extreme temperatures and their associated circulation patterns. International Journal of Climatology, 38(3), 1393–1408. https://doi.org/10.1002/joc.5253
  • Kollanus, V., Tiittanen, P., & Lanki, T. (2021). Mortality risk related to heatwaves in Finland – factors affecting vulnerability. Environmental Research, 201, 111503. https://doi.org/10.1016/j.envres.2021.111503
  • Kotol, M., Rode, C., Clausen, G., & Nielsen, T. R. (2014). Indoor environment in bedrooms in 79 Greenlandic households. Building and Environment, 81, 29–36. https://doi.org/10.1016/j.buildenv.2014.05.016
  • Kunkel, S., Kontonasiou, E., Arcipowska, A., Mariottini, F., & Atanasiu, B. (2015). Indoor air quality, thermal comfort and daylight. Analysis of residential buildings regulations in eight EU member states (Issue March). the Buildings Performance Institute Europe (BPIE). https://www.researchgate.net/publication/274695177
  • Laouadi, A., Bartko, M., & Lacasse, M. A. (2020). A new methodology of evaluation of overheating in buildings. Energy and Buildings, 226, 110360. https://doi.org/10.1016/j.enbuild.2020.110360
  • Lee, W. V., & Steemers, K. (2017). Exposure duration in overheating assessments: A retrofit modelling study. Building Research & Information, 45(1-2), 60–82. https://doi.org/10.1080/09613218.2017.1252614
  • Lehmann, E. L. (1959). Testing statistical hypotheses. JOHN WILEY & SONS, INC.
  • Lestinen, S. (2018). Indoor airflow characteristics under increased heat load conditions [Aalto University]. http://urn.fi/URN:ISBN:978-952-60-8314-8
  • Lomas, K. J., Watson, S., Allinson, D., Fateh, A., Beaumont, A., Allen, J., Foster, H., & Garrett, H. (2021). Dwelling and household characteristics’ influence on reported and measured summertime overheating: A glimpse of a mild climate in the 2050s. Building and Environment, 201, 107986. https://doi.org/10.1016/j.buildenv.2021.107986
  • Maivel, M., Kurnitski, J., & Kalamees, T. (2015). Field survey of overheating problems in Estonian apartment buildings. Architectural Science Review, 58(1), 1–10. https://doi.org/10.1080/00038628.2014.970610
  • IPCC, Masson-Delmotte, V., Zhai, P., Chen, Y., Goldfarb, L., Gomis, M. I., Matthews, J. B. R., Berger, S., Huang, M., Yelekçi, O., Yu, R., Zhou, B., Lonnoy, E., Maycock, T. K., Waterfield, T., Leitzell, K., & Caud, N. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. www.ipcc.ch
  • Mavrogianni, A., Pathan, A., Oikonomou, E., Biddulph, P., Symonds, P., & Davies, M. (2017). Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(1-2), 119–142. https://doi.org/10.1080/09613218.2016.1208431
  • Mikkonen, S., Laine, M., Mäkelä, H. M., Gregow, H., Tuomenvirta, H., Lahtinen, M., & Laaksonen, A. (2015). Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment., 29(6), 1521–1529. https://doi.org/10.1007/s00477-014-0992-2
  • Ministry of Environment. (2018). Decree (1010/2017) on the energy performance of the new building.
  • Ministry of Social Affairs and Health. (2015). Decree of the ministry of social affairs and health on health-related conditions of housing and other residential buildings and qualification requirements for third-party experts, 545/2015. 151(5), 10–17.
  • Mulville, M., & Stravoravdis, S. (2016). The impact of regulations on overheating risk in dwellings. Building Research & Information, 44(5-6), 520–534. https://doi.org/10.1080/09613218.2016.1153355
  • Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: Principles and practice (1st ed.). Routledge. https://doi.org/10.4324/9780203123010
  • Nowacki, J.-E. (2007). Heat pumps in energy statistics – suggestions.
  • The Passivhaus Trust. (2023). Technical guidance - keeping cool: Avoiding overheating risks. https://www.passivhaustrust.org.uk/guidance_detail.php?gId = 49
  • Pathan, A., Mavrogianni, A., Summerfield, A., Oreszczyn, T., & Davies, M. (2017). Monitoring summer indoor overheating in the London housing stock. Energy and Buildings, 141, 361–378. https://doi.org/10.1016/j.enbuild.2017.02.049
  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  • Ramallo-González, A. P., Eames, M. E., Natarajan, S., Fosas-de-Pando, D., & Coley, D. A. (2020). An analytical heat wave definition based on the impact on buildings and occupants. Energy and Buildings, 216, 109923. https://doi.org/10.1016/j.enbuild.2020.109923
  • Salthammer, T., Schieweck, A., Gu, J., Ameri, S., & Uhde, E. (2018). Future trends in ambient air pollution and climate in Germany – implications for the indoor environment. Building and Environment, 143, 661–670. https://doi.org/10.1016/j.buildenv.2018.07.050
  • Sharifi, S., Saman, W., & Alemu, A. (2019). Identification of overheating in the top floors of energy-efficient multilevel dwellings. Energy and Buildings, 204, 109452. https://doi.org/10.1016/j.enbuild.2019.109452
  • Statistics Finland’s free-of-charge statistical databases. (n.d.). https://pxdata.stat.fi/PxWeb/pxweb/en/StatFin/StatFin__asas/statfin_asas_pxt_116f.px/
  • Tamerius, J. D., Perzanowski, M. S., Acosta, L. M., Jacobson, J. S., Goldstein, I. F., Quinn, J. W., Rundle, A. G., & Shaman, J. (2013). Socioeconomic and outdoor meteorological determinants of indoor temperature and humidity in New York city dwellings*. Weather, Climate, and Society, 5(2), 168–179. https://doi.org/10.1175/WCAS-D-12-00030.1
  • Tian, Z., Zhang, S., Deng, J., & Hrynyszyn, B. D. (2020). Evaluation on overheating risk of a typical Norwegian residential building under future extreme weather conditions. Energies, 13(3), 658. https://doi.org/10.3390/en13030658
  • Tillson, A.-A., Oreszczyn, T., & Palmer, J. (2013). Assessing impacts of summertime overheating: Some adaptation strategies. Building Research & Information, 41(6), 652–661. https://doi.org/10.1080/09613218.2013.808864
  • Vainio, T., Lindroos, T., Pursiheimo, E., Vesanen, T., Sipilä, K., Airaksinen, M., & Rehunen, A. (2010). High-efficiency CHP, district heating and district cooling in Finland.
  • van Hooff, T., Blocken, B., Hensen, J. L. M., & Timmermans, H. J. P. (2014). On the predicted effectiveness of climate adaptation measures for residential buildings. Building and Environment, 82, 300–316. https://doi.org/10.1016/j.buildenv.2014.08.027
  • Vellei, M., Ramallo-González, A. P., Coley, D., Lee, J., Gabe-Thomas, E., Lovett, T., & Natarajan, S. (2017). Overheating in vulnerable and non-vulnerable households. Building Research & Information, 45(1-2), 102–118. https://doi.org/10.1080/09613218.2016.1222190
  • Zhou, X., Carmeliet, J., Sulzer, M., & Derome, D. (2020). Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves. Applied Energy, 278, 115620. https://doi.org/10.1016/j.apenergy.2020.115620