2,011
Views
51
CrossRef citations to date
0
Altmetric
Comprehensive Review

Current evidence linking diet to gut microbiota and brain development and function

ORCID Icon, &
Pages 1-19 | Received 16 Feb 2018, Accepted 04 Apr 2018, Published online: 19 Apr 2018

References

  • Aanesen A, Fried G, Andersson E, Gottlieb C. 1996. Carrier-mediated gamma-aminobutyric acid uptake in human spermatozoa indicating the presence of a high-affinity gamma-aminobutyric acid transport protein. Biol Reprod. 54:841–846.
  • Abbott A. 2016. Scientists bust myth that our bodies have more bacteria than human cells. Nature. 10. doi:10.1038/nature.2016.19136.
  • Abumrad NA, Davidson NO. 2012. Role of the gut in lipid homeostasis. Physiol Rev. 92:1061–1085.
  • Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, Houdeau E, Theodorou V, Tompkins T. 2014. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil. 26:510–520.
  • Alarifi S, Bell A, Walton G. 2018. In vitro fermentation of gum acacia – impact on the faecal microbiota. Int J Food Sci Nutr. https://doi.org/10.1080/09637486.2017.1404970
  • Ali BH, Ziada A, Blunden G. 2009. Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol. 47:1–8.
  • Allayee H, Hazen SL. 2015. Contribution of gut bacteria to lipid levels: figure.: another metabolic role for microbes?. Circ Res. 117:750–754.
  • Aluko R. 2012. Bioactive lipids. In: Aluko R, editor. Functional foods and nutraceuticals. New York: Springer; p. 23–36.
  • Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. AJP: Gastrointest Liver Physiol. 303:G1288–G1295.
  • Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Sears MR, Becker AB, Scott JA, Kozyrskyi AL. 2013. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol. 9:15.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 17:690–703.
  • Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 25:397–407.
  • Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, et al. 2017. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 66:1727–1738.
  • Ballard O, Morrow AL. 2013. Human Milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 60:49–74.
  • Barnes S, Prasain J, D’alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janle EM, Weaver CM. 2011. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct. 2:235.
  • Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. 2012. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 56:952–964.
  • Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. 2008. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 18:207–250.
  • Bellisle F. 2003. Why should we study human food intake behaviour?. Nutr Metab Cardiovasc Dis. 13:189–193.
  • Bergen WG, Wu G. 2009. Intestinal nitrogen recycling and utilization in health and disease. J. Nutr. 139:821–825.
  • Bernalier A. 1996. Acetogenesis from H2 and CO2 by methane- and non-methane-producing human colonic bacterial communities. FEMS Microbiol Ecol. 19:193–202.
  • Bieberich E. 2012. It’s a lipid’s world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res. 37:1208–1229.
  • Boon E, Meehan CJ, Whidden C, Wong DH-J, Langille MGI, Beiko RG. 2014. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev. 38:90–118.
  • Borre YE, O’keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. 2014. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 20:509–518.
  • Bosoi CR, Rose CF. 2009. Identifying the direct effects of ammonia on the brain. Metab Brain Dis. 24:95–102.
  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 108:16050–16055.
  • Brestoff JR, Artis D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 14:676–684.
  • Butterworth RF, Giguère JF, Michaud J, Lavoie J, Layrargues GP. 1987. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol. 6:1–12.
  • Cani PD. 2015. Gut microbiota and incretins. Endocr Abs. 37:S8.1.
  • Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM. 2009. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 90:1236–1243.
  • Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI, 2013. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 24:1415–1422.
  • Celis-Morales CA, Lyall DM, Gray SR, Steell L, Anderson J, Iliodromiti S, Welsh P, Guo Y, Petermann F, Mackay DF, et al. 2017. Dietary fat and total energy intake modifies the association of genetic profile risk score on obesity: evidence from 48 170 UK Biobank participants. Int J Obes. 41:1761–1768.
  • Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC, Mills DA, Lamuela-Raventos RM, Waterhouse AL. 2014. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct. 5:2298–2308.
  • Colabroy KL, Begley TP. 2005. Tryptophan catabolism: identification and characterization of a new degradative pathway. J Bacteriol. 187:7866–7869.
  • Cone JW, van Gelder AH. 1999. Influence of protein fermentation on gas production profiles. Anim Feed Sci Technol. 76:251–264.
  • Conlon M, Bird A. 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 7:17–44.
  • Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM. 2008. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 99:110–120.
  • Costantini L, Molinari R, Farinon B, Merendino N. 2017. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci. 18:2645.
  • Cueva C, Sánchez-Patán F, Monagas M, Walton GE, Gibson GR, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV. 2013. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol. 83:792–805.
  • Cummings JH, Macfarlane GT. 1997. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21:357–365.
  • Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 70:443–459.
  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 28:1221–1227.
  • Dai Z-L, Li X-L, Xi P-B, Zhang J, Wu G, Zhu W-Y. 2013. l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids. 45:501–512.
  • Dai Z-L, Wu G, Zhu W-Y. 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci (Landmark Ed). 16:1768–1786.
  • Dasarathy S. 2016. Nutrition and alcoholic liver disease: effects of alcoholism on nutrition, effects of nutrition on alcoholic liver disease, and nutritional therapies for alcoholic liver disease. Clin Liver Dis. 20:535–550.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563.
  • De Palma G, Collins SM, Bercik P, Verdu EF. 2014. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?: the microbiota-gut-brain axis. J Physiol (Lond.). 592:2989–2997.
  • de Vladar HP. 2012. Amino acid fermentation at the origin of the genetic code. Biol Direct. 7:6.
  • Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. 2008. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatry Res. 43:164–174.
  • Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, Moreno-Arribas MV, Bartolomé B. 2015. A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int. 2015:1–15.
  • Duka A, Fotakis P, Georgiadou D, Kateifides A, Tzavlaki K, von Eckardstein L, Stratikos E, Kardassis D, Zannis VI. 2013. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. J Lipid Res. 54:107–115.
  • El Aidy S, Dinan TG, Cryan JF. 2015. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther. 37:954–967.
  • El Aidy S, Dinan TG, Cryan JF. 2014. Immune modulation of the brain-gut-microbe axis. Front Microbiol. 5:146.
  • Evenepoel P, Meijers BKI, Bammens BRM, Verbeke K. 2009. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 76:S12–S19.
  • Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, et al. 2013. The long-term stability of the human gut microbiota. Science. 341:1237439.
  • Ferruzzi MG, Lobo JK, Janle EM, Cooper B, Simon JE, Wu Q-L, Welch C, Ho L, Weaver C, Pasinetti GM. 2009. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in Alzheimer’s disease. J Alzheimers Dis. 18:113–124.
  • Finegold SM, Li Z, Summanen PH, Downes J, Thames G, Corbett K, Dowd S, Krak M, Heber D. 2014. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 5:436.
  • Forchielli ML, Walker WA. 2005. The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr. 93:S41.
  • Furness J. 2000. Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96.
  • Ganguli K, Meng D, Rautava S, Lu L, Walker WA, Nanthakumar N. 2013. Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. Am J Physiol Gastrointest Liver Physiol. 304:G132–G141.
  • Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F, Vrhovsek U. 2015. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci. 6:1341–1352.
  • Gérard P. 2013. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 3:14–24.
  • Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, François P, et al. 2011. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol. 2:149.
  • Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 125:1401–1412.
  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy M, Saulnier D, Loh G, et al. 2010. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 7:1–19.
  • Ginsburg I, Koren E, Shalish M, Kanner J, Kohen R. 2012. Saliva increases the availability of lipophilic polyphenols as antioxidants and enhances their retention in the oral cavity. Arch Oral Biol. 57:1327–1334.
  • Girvin GT, Stevenson JW. 1954. Cell free “Choline Acetylase” from Lactobacillus plantarum. Biochem Cell Biol. 32:131–146.
  • Gohir W, Whelan FJ, Surette MG, Moore C, Schertzer JD, Sloboda DM. 2015. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes. 6:310–320.
  • González-Parra E, Herrero JA, Elewa U, Bosch RJ, Arduán AO, Egido J. 2013. Bisphenol A in chronic kidney disease. Int J Nephrol. 2013:437857.
  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. 2014. Human genetics shape the gut microbiome. Cell. 159:789–799.
  • Gopal PK, Sullivan PA, Smart JB. 2001. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int Dairy J. 11:19–25.
  • Gordon JI, Dewey KG, Mills DA, Medzhitov RM. 2012. The human gut microbiota and undernutrition. Sci Transl Med. 4:137ps12.
  • Green C, Hodson L. 2014. The influence of dietary fat on liver fat accumulation. Nutrients. 6:5018–5033.
  • Grenham S, Clarke G, Cryan JF, Dinan TG. 2011. Brain-gut-microbe communication in health and disease. Front Physiol. 2:94.
  • Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, Gilbert JA. 2014. Development of the preterm infant gut microbiome: a research priority. Microbiome. 2:38.
  • Gu Q, Yang Y, Jiang G, Chang G. 2003. Study on the regulative effect of isomalto oligosaccharides on human intestinal flora. J Hyg Res. 32:54–55.
  • Hardy H, Harris J, Lyon E, Beal J, Foey A. 2013. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients. 5:1869–1912.
  • Hassiotou F, Hepworth AR, Metzger P, Tat Lai C, Trengove N, Hartmann PE, Filgueira L. 2013. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin Transl Immunol. 2:e3.
  • Hayakawa K, Mizutani J, Wada K, Masai T, Yoshihara I, Mitsuoka T. 1990. Effects of soybean oligosaccharides on human faecal flora. Microb Ecol Health Dis. 3:293–303.
  • Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. 2018. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 119:176–189.
  • Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. 2011. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 108:3047–3052.
  • Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP. 1996. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J. 320(Pt 2):595–597.
  • Hickson M. 2006. Malnutrition and ageing. Postgrad Med J. 82:2–8.
  • Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JPE, Gibson GR, de Pascual-Teresa S. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem. 60:3882–3890.
  • Ho AL, Kosik O, Lovegrove A, Charalampopoulos D, Rastall RA. 2018. In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydr Polym 179:50–58.
  • Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, Rebusi N, Heshmati M, Aleyasin H, Warren BL, et al. 2014. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci USA. 111:16136–16141.
  • Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K. 2003. Evolutional study on acetylcholine expression. Life Sci. 72:1745–1756.
  • Hughes R, Magee EA, Bingham S. 2000. Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol. 1:51–58.
  • Huseyin CE, O’toole PW, Cotter PD, Scanlan PD. 2017. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev. 41:479–511.
  • Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. 2000. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 164:3596–3599.
  • Jacobs DM, Gaudier E, van Duynhoven J, Vaughan EE. 2009. Non-digestible food ingredients, colonic microbiota and the impact on gut health and immunity: a role for metabolomics. Curr Drug Metab. 10:41–54.
  • Jakobek L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 175:556–567.
  • Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson AF. 2014. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 63:559–566.
  • Joris PJ, Mensink RP. 2016. Effect of dietary fatty acid intake on cardiovascular disease. In: Sanders T, editor. Functional dietary lipids. London: Elsevier; p. 177–191.
  • Kamada N, Chen GY, Inohara N, Núñez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 14:685–690.
  • Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. 2015. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 7:2839–2849.
  • Keunen K, van Elburg RM, van Bel F, Benders MJNL. 2015. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res. 77:148–155.
  • Kim D. 2000. Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol. 95:2698–2709.
  • Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA. 108:8030–8035.
  • Klein C, Patte-Mensah C, Taleb O, Bourguignon J-J, Schmitt M, Bihel F, Maitre M, Mensah-Nyagan AG. 2013. The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology. 70:254–260.
  • Kobayashi K. 2001. Role of catecholamine signaling in brain and nervous system functions: new insights from mouse molecular genetic study. J Investig Dermatol Symp Proc. 6:115–121.
  • Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M, Schilhabel A, Schmitz R, Moissl-Eichinger C. 2017. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. MBio. 8:e00824-17.
  • Kruse HP, Kleessen B, Blaut M. 1999. Effects of inulin on faecal bifidobacteria in human subjects. Br J Nutr. 82:375–382.
  • La Cruz VP-D, Carrillo-Mora P, Santamaría A. 2012. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res. 5:1–8.
  • Larauche M, Kiank C, Tache Y. 2009. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol. 60 Suppl 7:33–46.
  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 8:171–184.
  • Leclercq S, de Timary P, Delzenne NM, Stärkel P. 2017. The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry. 7:e1048.
  • Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, Morris MJ. 2015. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 10:e0126931.
  • Liong M-T. 2008. Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int J Mol Sci. 9:854–863.
  • Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, He Y, Qi Q, Long H, Zhang Y, et al. 2017. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep. 7:11789.
  • Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortiz-Islas E, et al. 2011. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol. 33:538–547.
  • Luna RA, Foster JA. 2015. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 32:35–41.
  • Lyte M. 2013. Microbial Endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 9:e1003726.
  • Lyte M. 2011. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 33:574–581.
  • Macfarlane GT, Cummings JH, Allison C. 1986. Protein degradation by human intestinal bacteria. J Gen Microbiol. 132:1647–1656.
  • Macfarlane GT, Gibson GR, Cummings JH. 1992. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 72:57–64.
  • Macfarlane GT, Macfarlane S. 2011. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 45:S120–S127.
  • Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. 2018. IgA function in relation to the intestinal microbiota. Annu Rev Immunol. 36:1.
  • Manichanh C, Borruel N, Casellas F, Guarner F. 2012. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 9:599–608.
  • Mann J, Cummings JH, Englyst HN, Key T, Liu S, Riccardi G, Summerbell C, Uauy R, van Dam RM, Venn B, et al. 2007. FAO/WHO Scientific Update on carbohydrates in human nutrition: conclusions. Eur J Clin Nutr. 61:S132–S137.
  • Maslowski KM, Mackay CR. 2011. Diet, gut microbiota and immune responses. Nat Immunol. 12:5–9.
  • Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C. 2011. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2:256–261.
  • Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol. 55:165–199.
  • Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, Fernández L, Rodríguez JM, Jiménez E. 2013. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 8:e66986.
  • Moughan PJ, Butts CA, Rowan AM, Deglaire A. 2005. Dietary peptides increase endogenous amino acid losses from the gut in adults. Am J Clin Nutr. 81:1359–1365.
  • Muccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM, Delzenne NM, Cani PD. 2010. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 6:392.
  • Neis E, Dejong C, Rensen S. 2015. The role of microbial amino acid metabolism in host metabolism. Nutrients. 7:2930–2946.
  • Org E, Parks BW, Joo JWJ, Emert B, Schwartzman W, Kang EY, Mehrabian M, Pan C, Knight R, Gunsalus R, et al. 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25:1558–1569.
  • Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 8:78.
  • Parfrey LW, Walters WA, Knight R. 2011. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol. 2:153.
  • Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D, Teiling C, Kodira C, Mohiuddin M, Brunelle J, Driscoll M, et al. 2014. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front Microbiol. 5:298.
  • Paul HA, Bomhof MR, Vogel HJ, Reimer RA. 2016. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep. 6:20683.
  • Pemberton LA, Kerr SJ, Smythe G, Brew BJ. 1997. Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res. 17:589–595.
  • Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. 2017. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 5:48.
  • Persaud RR, Azad MB, Chari RS, Sears MR, Becker AB, Kozyrskyj AL. 2015. Perinatal antibiotic exposure of neonates in Canada and associated risk factors: a population-based study. J Matern Fetal Neonatal Med. 28:1190–1195.
  • Petry N, Egli I, Chassard C, Lacroix C, Hurrell R. 2012. Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. Am J Clin Nutr. 96:325–331.
  • Piomelli D. 2003. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 4:873–884.
  • Pomare EW, Branch WJ, Cummings JH. 1985. Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J Clin Invest. 75:1448–1454.
  • Poutahidis T, Kleinewietfeld M, Erdman SE. 2014. Gut microbiota and the paradox of cancer immunotherapy. Front Immunol. 5:157.
  • Rai R, Saraswat VA, Dhiman RK. 2015. Gut microbiota: its role in hepatic encephalopathy. J Pharm Sci Exp Pharmacol. 5:S29–S36.
  • Rastall RA, Gibson GR. 2015. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol. 32:42–46.
  • Ravel J, Blaser MJ, Braun J, Brown E, Bushman FD, Chang EB, Davies J, Dewey KG, Dinan T, Dominguez-Bello M, et al. 2014. Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013. Microbiome. 2:16.
  • Raybould HE. 2010. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 153:41–46.
  • Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29:1395–1403.
  • Report of a Joint FAO/WHO/UNU Expert Consultation, Reprinted 1987, 1991. Energy and protein requirements. WHO Technical Report Series 724.
  • Rhee SH, Pothoulakis C, Mayer EA. 2009. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 6:306–314.
  • Rijnen L, Bonneau S, Yvon M. 1999. Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl Environ Microbiol. 65:4873–4880.
  • Rinttila T, Apajalahti J. 2013. Intestinal microbiota and metabolites – implications for broiler chicken health and performance1. J Appl Poult Res. 22:647–658.
  • Rodriguez-Colinas B, Kolida S, Baran M, Ballesteros AO, Rastall RA, Plou FJ. 2013. Analysis of fermentation selectivity of purified galacto-oligosaccharides by in vitro human faecal fermentation. Appl Microbiol Biotechnol. 97:5743–5752.
  • Rossi M, Amaretti A, Raimondi S. 2011. Folate production by probiotic bacteria. Nutrients. 3:118–134.
  • Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature. 555:210–215.
  • Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, et al. 2007. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 13:35–37.
  • Rowatt E. 1948. The relation of pantothenic acid to acetylcholine formation by a strain of Lactobacillus plantarum. J Gen Microbiol. 2:25–30.
  • Russo R, Cristiano C, Avagliano C, De Caro C, La Rana G, Raso G, Canani R, Meli R, Calignano A. 2017. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr Med Chem. 24:1.
  • Salmerón J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. 2001. Dietary fat intake and risk of type 2 diabetes in women. Am. J. Clin. Nutr 73:1019–1026.
  • Sam Q, Chang M, Chai L. 2017. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci. 18:330.
  • Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM, Florido J. 2010. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 104:83–92.
  • Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C. 2018. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 75:129–148.
  • Sartor RB, Mazmanian SK. 2012. Intestinal microbes in inflammatory bowel diseases. Am J Gastroenterol. 1:15–21.
  • Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. 2015. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis. 47:1007–1012.
  • Schaller M. 2015. The behavioral immune system. In: Buss DM, editor. The handbook of evolutionary psychology. Hoboken, NJ: John Wiley & Sons, Inc., p. 1–19.
  • Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. 2015. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 232:1793–1801.
  • Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Açil Y, Glüer C-C, Schrezenmeir J. 2007. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr. 137:838S–846S.
  • Schwartz M, Kipnis J, Rivest S, Prat A. 2013. How do immune cells support and shape the brain in health, disease, and aging?. J Neurosci. 33:17587–17596.
  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. 2013. The influence of diet on the gut microbiota. Pharmacol Res. 69:52–60.
  • Sherman MP, Zaghouani H, Niklas V. 2015. Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res. 77:127–135.
  • Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, Takeda K. 2013. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 8:e80604.
  • Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR. 2009. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 29:508–518.
  • Silk DBA, Grimble GK, Rees RG. 1985. Protein digestion and amino acid and peptide absorption. Proc Nutr Soc. 44:63–72.
  • Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E, Jenmalm MC. 2009. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses: gut microbiota and immune responses. Clin Exp Allergy. 39:1842–1851.
  • Smith E, Macfarlane G. 1997. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe. 3:327–337.
  • Soderborg TK, Borengasser SJ, Barbour LA, Friedman JE. 2016. Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia. 59:895–906.
  • Stevens JF, Maier CS. 2016. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev. 15:425–444.
  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, Kubo C, Koga Y. 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice: commensal microbiota and stress response. J Physiol Paris. 558:263–275.
  • Sugahara H, Okai S, Odamaki T, Wong CB, Kato K, Mitsuyama E, Xiao J-Z, Shinkura R. 2017. Decreased taxon-specific IgA response in relation to the changes of gut microbiota composition in the elderly. Front Microbiol. 8:1757.
  • Szwajgier D, Borowiec K, Pustelniak K. 2017. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients. 9:477.
  • Tajti J, Majlath Z, Szok D, Csati A, Toldi J, Fulop F, Vecsei L. 2015. Novel kynurenic acid analogues in the treatment of migraine and neurodegenerative disorders: preclinical studies and pharmaceutical design. Curr Pharm Des. 21:2250–2258.
  • Tatullo M, Simone GM, Tarullo F, Irlandese G, Vito DD, Marrelli M, Santacroce L, Cocco T, Ballini A, Scacco S. 2016. Antioxidant and antitumor activity of a bioactive polyphenolic fraction isolated from the brewing process. Sci Rep. 6:36042.
  • Thomas CM, Versalovic J. 2010. Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes. 1:148–163.
  • Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, et al. 2013. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 144:1394–1401.
  • Torres DPM, Gonçalves M do PF, Teixeira JA, Rodrigues LR. 2010. Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf. 9:438–454.
  • Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature. 489:242–249.
  • Triantafyllou K, Chang C, Pimentel M. 2014. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil. 20:31–40.
  • Trtovac D, Lee J. 2018. The use of technology in identifying hospital malnutrition: scoping review. JMIR Med Inform. 6:e4.
  • Tuohy KM, Hinton DJS, Davies SJ, Crabbe MJC, Gibson GR, Ames JM. 2006. Metabolism of Maillard reaction products by the human gut microbiota – implications for health. Mol Nutr Food Res. 50:847–857.
  • Tuohy KM, Rouzaud GCM, Brück WM, Gibson GR. 2005. Modulation of the human gut microflora towards improved health using prebiotics–assessment of efficacy. Curr Pharm Des. 11:75–90.
  • Tuohy KM, Venuti P, Cuva S, Furlanello C, Gasperotti M, Mancini A, Ceppa F, Cavalieri D, de Filippo C, Vrhovsek U, et al. 2015. Diet and the gut microbiota – how the gut. In: Tuhoy K, Del Rio D, editors. Diet-microbe interactions in the gut. New York: Elsevier/Academic Press; p. 225–245.
  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. 2009. A core gut microbiome in obese and lean twins. Nature. 457:480–484.
  • Tzounis X, Vulevic J, Kuhnle GGC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPE. 2008. Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr. 99:782–792.
  • Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. 2010. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients. 2:1106–1131.
  • Viaene L, Thijs L, Jin Y, Liu Y, Gu Y, Meijers B, Claes K, Staessen J, Evenepoel P. 2014. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype. PLoS One. 9:e79682.
  • Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR. 2008. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr. 88:1438–1446.
  • Walther DJ. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 299:76.
  • Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, Cooper BR, Jannasch AH, D'Arcy BR, Williams BA, et al. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization. Mol Nutr Food Res. 59:1025–1040.
  • Williams BA, Verstegen MWA, Tamminga S. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev. 14:207.
  • Wilson ID, Nicholson JK. 2017. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 179:204–222.
  • Winston JA, Theriot CM. 2016. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe. 41:44–50.
  • Woting A, Blaut M. 2016. The intestinal microbiota in metabolic disease. Nutrients. 8:202.
  • Wu G. 2014. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol. 5:34.
  • Wu G. 2010. Functional amino acids in growth, reproduction, and health. Adv Nutr. 1:31–37.
  • Wu G. 1998. Intestinal mucosal amino acid catabolism. J Nutr. 128:1249–1252.
  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 161:264–276.
  • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 39:372–385.
  • Zhang J, Liu Q. 2015. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 6:254–264.
  • Zhu MY, Juorio AV. 1995. Aromatic L-amino acid decarboxylase: biological characterization and functional role. Gen Pharmacol. 26:681–696.
  • Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. 2006. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 9:268–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.