273
Views
11
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice

ORCID Icon, &
Pages 311-322 | Received 16 May 2018, Accepted 02 Aug 2018, Published online: 02 Jan 2019

References

  • Chicco A, Creus A, Illesca P, Hein GJ, Rodriguez S, Fortino A. 2016. Effects of post-suckling n-3 polyunsaturated fatty acids: prevention of dyslipidemia and liver steatosis induced in rats by a sucrose-rich diet during pre- and post-natal life. Food Funct. 7:445–454.
  • Bettaieb A, Vazquez Prieto MA, Rodriguez Lanzi C, Miatello RM, Haj FG, Fraga CG, Oteiza PI. 2014. (-)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radic Biol Med. 72:247–256.
  • Feng WY. 2006. Metabolism of green tea catechins: an overview. Curr Drug Metab. 7:755–809.
  • Han LD, Xia JF, Liang QL, Wang Y, Wang YM, Hu P, Li P, Luo GA. 2011. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 689:85–91.
  • Hung WL, Hwang LS, Shahidi F, Pan MH, Wang Y, Ho CT. 2016. Endogenous formation of trans fatty acids: health implications and potential dietary intervention. J Funct Foods. 25:14–24.
  • Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J. 2015. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct. 6:409–414.
  • Kawasaki T, Kashiwabara A, Sakai T, Igarashi K, Ogata N, Watanabe H, Ichiyanagi K, Yamanouchi T. 2005. Long-term sucrose-drinking causes increased body weight and glucose intolerance in normal male rats. Br J Nutr. 93:613–618.
  • Kerio LC, Wachira FN, Wanyoko JK, Rotich MK. 2013. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Food Chem. 136:1405–1413.
  • Khan N, Mukhtar H. 2007. Tea polyphenols for health promotion. Life Sci. 81:519–533.
  • Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, et al. 2013. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 62:1787–1794.
  • Li W, Huang D, Gao A, Yang X. 2016. Stachyose increases absorption and hepatoprotective effect of tea polyphenols in high fructose-fed mice. Mol Nutr Food Res. 60:502–510.
  • Li W, Li Z, Han X, Huang D, Lu Y, Yang X. 2016. Enhancing the hepatic protective effect of genistein by oral administration with stachyose in mice with chronic high fructose diet consumption. Food Funct. 7:2420–2430.
  • Li W, Lu Y. 2018. Hepatoprotective effects of sophoricoside against fructose-induced liver injury via regulating lipid metabolism, oxidation, and inflammation in mice. J Food Sci. 83:552–558.
  • Li W, Lu Y, Huang D, Han X, Yang X. 2016. Effects of stachyose on absorption and transportation of tea flavonoids in mice: possible role of phase II metabolic enzymes and efflux transporters inhibition by stachyose. Food Nutr Res. 60:32783.
  • Matsukawa N, Matsumoto M, Chiji H, Hara H. 2009. Oligosaccharide promotes bioavailability of a water-soluble flavonoid glycoside, alpha G-rutin, in rats. J Agric Food Chem. 57:1498–1505.
  • Nomura K, Yamanouchi T. 2012. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem. 23:203–208.
  • Oliveira LS, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. 2014. The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem. 25:193–200.
  • Phuwamongkolwiwat P, Hira T, Hara H. 2014. A nondigestible saccharide, fructooligosaccharide, increases the promotive effect of a flavonoid, α-glucosyl-isoquercitrin, on glucagon-like peptide 1 (GLP-1) secretion in rat intestine and enteroendocrine cells. Mol Nutr Food Res. 58:1581–1584.
  • Phuwamongkolwiwat P, Suzuki T, Hira T, Hara H. 2014. Fructooligosaccharide augments benefits of quercetin-3-O-β-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats. Eur J Nutr. 53:457–468.
  • Rohart F, Gautier B, Singh A, Cao KAL. 2017. mixOmics: an R package for omics feature selection and multiple data integration. PLoS Comput Biol. 13:e1005752.
  • Rolo AP, Teodoro JS, Palmeira CM. 2012. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 52:59–69.
  • Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, Ramírez V, Tovar AR, Torres N. 2017. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients. 9:393.
  • Sakamoto M, Takagaki A, Matsumoto K, Kato Y, Goto K, Benno Y. 2009. Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int J Syst Evol Microbiol. 59:1748–1753.
  • Schultz A, Barbosa-da-Silva S, Aguila MB, Mandarim-de-Lacerda CA. 2015. Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose. Food Funct. 6:1684–1691.
  • Softic S, Gupta MK, Wang GX, Fujisaka S, O'Neill BT, Rao TN, Willoughby J, et al. 2017. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 3:94585.
  • Spruss A, Bergheim I. 2009. Dietary fructose and intestinalbarrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J Nutr Biochem. 20:657–662.
  • Sundström J, Lind L, Vessby B, Andrén B, Aro A, Lithell HO. 2001. Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later. Circulation. 103:836–841.
  • Takagaki A, Kato Y, Nanjo F. 2014. Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin. Arch Microbiol. 196:681–695.
  • Takagaki A, Nanjo F. 2010. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. J Agric Food Chem. 58:1313–1321.
  • Uehara M, Ohta A, Sakai K, Suzuki K, Watanabe S, Adlercreutz H. 2001. Dietary fructooligosaccharides modify intestinal bioavailability of a single dose of genistein and daidzein and affect their urinary excretion and kinetics in blood of rats. J Nutr. 131:787–795.
  • Warensjö E, Risérus U, Vessby B. 2005. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia. 48:1999–2005.
  • Yoshikawa T, Shimano H, Amemiya-Kudo M, Yahagi N, Hasty AH, Matsuzaka T, Okazaki H, et al. 2001. Identification of liver x receptor-retinoid x receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol. 21:2991–3000.
  • Zambonin L, Ferreri C, Cabrini L, Prata C, Chatgilialoglu C, Landi L. 2006. Occurrence of trans fatty acids in rats fed a trans-free diet: a free radical-mediated formation? Free Radic Biol Med. 40:1549–1556.
  • Zeng J, Yin P, Tan Y, Dong L, Hu C, Huang Q, Lu X, et al. 2014. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. J Proteome Res. 13:3420–3431.
  • Zhao L, Guo X, Wang O, Zhang H, Wang Y, Zhou F, Liu J, Ji B. 2016. Fructose and glucose combined with free fatty acids induce metabolic disorders in HepG2 cell: a new model to study the impacts of high-fructose/sucrose and high-fat diets in vitro. Mol Nutr Food Res. 60:909–921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.