382
Views
13
CrossRef citations to date
0
Altmetric
In Vitro and Animal Studies

3-Methyl-3-buten-1-ol (isoprenol) confers longevity and stress tolerance in Caenorhabditis elegans

, , , , ORCID Icon & ORCID Icon
Pages 595-602 | Received 18 Sep 2018, Accepted 27 Nov 2018, Published online: 09 Jan 2019

References

  • Akhoon BA, Pandey S, Tiwari S, Pandey R. 2016. Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp Gerontol. 78:47–56.
  • An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK. 2005. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc Natl Acad Sci. 102:16275–16280.
  • Asthana J, Yadav AK, Pant A, Pandey S, Gupta MM, Pandey R. 2015. Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol. 169:25–34.
  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. 2007. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev. 128:546–552.
  • Braeckman BP, Vanfleteren JR. 2007. Genetic control of longevity in C. elegans. Exp Gerontol. 42:90–98.
  • Brown MK, Evans JL, Luo Y. 2006. Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav. 85:620–628.
  • Chou HH, Keasling JD. 2012. Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate. Appl Environ Microbiol. 78:7849–7855.
  • Guarente L, Kenyon C. 2000. Genetic pathways that regulate ageing in model organisms. Nature. 408:255–262.
  • Gupta P, Phulara SC. 2015. Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol. 119:605–619.
  • Harman D. 1956. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11:298–300.
  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K. 1998. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature. 394:694–697.
  • Kampkötter A, Pielarski T, Rohrig R, Timpel C, Chovolou Y, Wätjen W, Kahl R. 2007. The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in Caenorhabditis elegans. Pharmacol Res. 55:139–147.
  • Kenyon CJ. 2010. The genetics of ageing. Nature. 464:504–512.
  • Lasekan O. 2017. Identification of the aroma compounds in Vitex doniana sweet: free and bound odorants. Chem Cent J. 11:19.
  • Lee SS, Kennedy S, Tolonen AC, Ruvkun G. 2003. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 300:644–647.
  • Li J, Chotiko A, Chouljenko A, Gao C, Zheng J, Sathivel S. 2018. Delivery of alpha-tocopherol through soluble dietary fibre-based nanofibres for improving the life span of Caenorhabditis elegans. Int J Food Sci Nutr.[accessed 2018 Jul 17];[10 p.]. doi:10.1080/09637486.2018.1489785
  • Li Y, Pfeifer BA. 2014. Heterologous production of plant-derived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. Curr Opin Plant Biol. 19:8–13.
  • Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. 2011. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev. 132:480–487.
  • McCaskill D, Croteau R. 1997. Prospects for the bioengineering of isoprenoid biosynthesis. In: Biotechnology of aroma compounds. Berlin, Heidelberg: Springer-Verlag; p. 107–146.
  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 424:277–283.
  • Negi H, Shukla A, Khan F, Pandey R. 2016. 3β-Hydroxy-urs-12-en-28-oic acid prolongs lifespan in C. elegans by modulating JNK-1. Biochem Biophys Res Commun. 480:539–543.
  • Pant A, Saikia SK, Shukla V, Asthana J, Akhoon BA, Pandey R. 2014. Beta-caryophyllene modulates expression of stress response genes and mediates longevity in Caenorhabditis elegans. Exp Gerontol. 57:81–95.
  • Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, Gonos ES, Chondrogianni N. 2016. 18α-Glycyrrhetinic acid proteasome activator decelerates aging and Alzheimer’s disease progression in Caenorhabditis elegans and neuronal cultures. Antioxid Redox Signal. 25:855–869.
  • Phulara SC, Chaurasia D, Diwan B, Chaturvedi P, Gupta P. 2018. In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem.72:47–54.
  • Phulara SC, Shukla V, Tiwari S, Pandey R. 2015. Bacopa monnieri promotes longevity in Caenorhabditis elegans under stress conditions. Pharmacogn Mag. 11:410–416.
  • Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL. 2011. The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol. 46:441–452.
  • Shukla V, Phulara SC, Yadav D, Tiwari S, Kaur S, Gupta MM, Nazir A, Pandey R. 2012. Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces α synuclein aggregation in Caenorhabditis elegans. CNS Neurol Disord Drug Targets. 11:984–992.
  • Shukla V, Saxena S, Tiwari S. 2016. Caenorhabditis elegans as a toolkit for studying mammalian aging pathways. J Nutr Food Sci. 6:5.
  • Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, Zhang G, Wen T. 2015. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol. 99:5151–5162.
  • Tippmann S, Chen Y, Siewers V, Nielsen J. 2013. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J. 8:1435–1444.
  • Tissenbaum HA, Guarente L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 410:227–230.
  • Tullet JMA, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 132:1025–1038.
  • Zhang J, Lu L, Zhou L. 2015. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans. Biochem Biophys Res Commun. 468:843–849.
  • Zhang L, Jie G, Zhang J, Zhao B. 2009. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med. 46:414–421.
  • Zheng Y, Liu Q, Li L, Qin W, Yang J, Zhang H, Jiang X, Cheng T, Liu W, Xu X, Xian M. 2013. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels. 6:57.
  • Zhi D, Wang D, Yang W, Duan Z, Zhu S, Dong J, Wang N, Wang N, Fei D, Zhang Z, Wang X, Wang M, Li H. 2017. Dianxianning improved amyloid β-induced pathological characteristics partially through DAF-2/DAF-16 insulin like pathway in transgenic C. elegans. Sci Rep. 7:11408.
  • Zhou K, Zou R, Zhang C, Stephanopoulos G, Too HP. 2013. Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng. 110:2556–2561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.