539
Views
6
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Development of a novel in vitro 3D intestinal model for permeability evaluations

, & ORCID Icon
Pages 549-562 | Received 06 Oct 2019, Accepted 02 Dec 2019, Published online: 17 Dec 2019

References

  • Al-Ali AAA, Steffansen B, Holm R, Nielsen CU. 2018. Nonionic surfactants increase digoxin absorption in Caco-2 and MDCKII MDR1 cells: impact on P-glycoprotein inhibition, barrier function, and repeated cellular exposure. Int J Pharm. 551(1–2):270–280.
  • Allen JD, Van Loevezijn A, Lakhai JM, Van Der Valk M, Van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH. 2002. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C 1. Mol Cancer Ther. 1(6):417–425.
  • Anderle P, Niederer E, Rubas W, Hilgendorf C, Spahn-Langguth H, Wunderli-Allenspach H, Merkle HP, Langguth P. 1998. P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci. 87(6):757–762.
  • Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. 2013. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm. 83(3):427–435.
  • Artursson P, Karlsson J. 1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 175(3):880–885.
  • Artursson P, Ungell AL, Löfroth JE. 1993. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res. 10(8):1123–1129.
  • Balda MS, Fallon MB, Van Itallie CM, Anderson JM. 1992. Structure, regulation, and pathophysiology of tight junctions in the gastrointestinal tract. Yale J Biol Med. 65(6):725–740.
  • Basson MD, Turowski GA, Rashid Z, Hong F, Madri JA. 1996. Regulation of human colonic cell line proliferation and phenotype by sodium butyrate. Digest Dis Sci. 41(10):1986–1993.
  • Bhagwate S, Gaikwad NJ. 2013. Stability indicating HPLC method for the determination of hydrochlorothiazide in pharmaceutical dosage form. J Appl Pharm Sci. 3:88–92.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 72(1–2):248–254.
  • Charde M, Welankiwar AS. 2014. Development of validated RP-HPLC method for the simultaneous estimation of atenolol and chlorthalidone in combine tablet dosage form. Int J Adv Pharm. 3:6–18.
  • DiMarco RL, Hunt DR, Dewi RE, Heilshorn SC. 2017. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates. Biomaterials. 129:152–162.
  • Drygiannakis I, Valatas V, Sfakianaki O, Bourikas L, Manousou P, Kambas K, Ritis K, Kolios G, Kouroumalis E. 2013. Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis. J Crohn's Colitis. 7(4):286–300.
  • Ebner T, Ishiguro N, Taub ME. 2015. The use of transporter probe drug cocktails for the assessment of transporter-based drug–drug interactions in a clinical setting—proposal of a four component transporter cocktail. J Pharm Sci. 104(9):3220–3228.
  • Eneroth A, Åström E, Hoogstraate J, Schrenk D, Conrad S, Kauffmann HM, Gjellan KE. 2001. Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. Eur J Pharm Sci. 12(3):205–214.
  • Estudante M, Morais JG, Soveral G, Benet LZ. 2013. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 65(10):1340–1356.
  • Faralli A, Shekarforoush E, Ajalloueian F, Mendes AC, Chronakis IS. 2019. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr Polym. 206:38–47.
  • Felton JS, Jägerstad M, Knize MG, Skog K, Wakabayashi K. 2000. Contents in foods, beverages and tobacco. In: Nagao M, Sugimura T, editors. Food borne carcinogens heterocyclic amines. Chichester, England: John Wiley & Sons Ltd.; p. 31–71.
  • Flecknell P. 2002. Replacement, reduction, refinement. ALTEX-Alternat Animal Exp. 19(2):73–78.
  • Furuya K, Sokabe M, Furuya S. 2005a. Characteristics of subepithelial fibroblasts as a mechano-sensor in the intestine: cell-shape-dependent ATP release and P2Y1 signaling. J Cell Sci. 118(15):3289–3304.
  • Furuya S, Furuya K, Sokabe M, Hiroe T, Ozaki T. 2005b. Characteristics of cultured subepithelial fibroblasts in the rat small intestine. II. Localization and functional analysis of endothelin receptors and cell-shape-independent gap junction permeability. Cell Tissue Res. 319(1):103–119.
  • García-Rodríguez A, Vila L, Cortés C, Hernández A, Marcos R. 2018. Effects of differently shaped TiO2 NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Part Fibre Toxicol. 15(1):33.
  • Hidalgo IJ, Raub TJ, Borchardt RT. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96(2):736–749.
  • Hymery N, Mounier J, Coton E. 2018. Effect of Penicillium roqueforti mycotoxins on Caco-2 cells: acute and chronic exposure. Toxicol in Vitro. 48:188–194.
  • Isshiki M, Umezawa K, Tamura H. 2011. Coffee induces breast cancer resistance protein expression in Caco-2 cells. Biol Pharm Bull. 34(10):1624–1627.
  • Kenny AJ, Maroux S. 1982. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 62(1):91–128.
  • Knize MG, Felton JS. 2005. Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutr Rev. 63(5):158–165.
  • Korjamo T, Honkakoski P, Toppinen MR, Niva S, Reinisalo M, Palmgrén JJ, Mönkkönen J. 2005. Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. Eur J Pharm Sci. 26(3–4):266–279.
  • Kowapradit J, Opanasopit P, Ngawhirunpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, Sajomsang W. 2010. In vitro permeability enhancement in intestinal epithelial cells (Caco-2) monolayer of water soluble quaternary ammonium chitosan derivatives. AAPS PharmSciTech. 11(2):497–508.
  • Le Ferrec E, Chesne C, Artusson P, Brayden D, Fabre G, Gires P, Guillou F, Rousset M, Rubas W, Scarino ML. 2001. In vitro models of the intestinal barrier. Atla. 29:649–668.
  • Leonard F, Collnot EM, Lehr CM. 2010. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol Pharm. 7(6):2103–2119.
  • Levin VA. 1980. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 23(6):682–684.
  • Li N, Wang D, Sui Z, Qi X, Ji L, Wang X, Yang L. 2013. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng Part C: Methods. 19(9):708–719.
  • Maubon N, Le Vee M, Fossati L, Audry M, Le Ferrec E, Bolze S, Fardel O. 2007. Analysis of drug transporter expression in human intestinal Caco‐2 cells by real‐time PCR. Fundam Clin Pharmacol. 21:659–663.
  • Murakami T, Takano M. 2008. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol. 4(7):923–939.
  • Owens B M J, Simmons A. 2013. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol. 6(2):224.
  • Pan F, Han L, Zhang Y, Yu Y, Liu J. 2015. Optimization of Caco-2 and HT29 co-culture in vitro cell models for permeability studies. Int J Food Sci Nutr. 66(6):680–685.
  • Patil S, Kumar L, Kohli G, Bansal A. 2012. Validated HPLC method for concurrent determination of antipyrine, carbamazepine, furosemide and phenytoin and its application in assessment of drug permeability through Caco-2 cell monolayers. Sci Pharm. 80(1):89–100.
  • Penny JI, Campbell FC. 1994. Active transport of benzo[a]pyrene in apical membrane vesicles from normal human intestinal epithelium. Biochim Biophys Acta. 1226(2):232–236.
  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. 1999a. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol – Cell Physiol. 277(1):C1–C19.
  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. 1999b. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol – Cell Physiol. 277(2):C183–C201.
  • Rhayat L, Maresca M, Nicoletti C, Perrier J, Brinch KS, Christian S, Devillard E, Eckhardt E. 2019. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front Immunol. 10:564.
  • Rubas W, Cromwell M, Gadek T, Narindray D, Mrsny R. 1993. Structural elements which govern the resistance of intestinal tissues to compound transport. MRS Online Proc Library Archive. 331:179.
  • Samy KE, Levy ES, Phong K, Demaree B, Abate AR, Desai TA. 2019. Human intestinal spheroids cultured using sacrificial micromolding as a model system for studying drug transport. Sci Rep. 9(1):1–12.
  • Schinkel AH, Jonker J W. 2012. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 64:138–153.
  • Schweinlin M, Wilhelm S, Schwedhelm I, Hansmann J, Rietscher R, Jurowich C, Walles H, Metzger M. 2016. Development of an advanced primary human in vitro model of the small intestine. Tissue Eng Part C: Methods. 22(9):873–883.
  • Shen J, Wanwimolruk S. 1991. A simple and sensitive HPLC method for antipyrine in plasma. J Liquid Chromatogr. 14(14):2801–2808.
  • Skolnik S, Lin X, Wang J, Chen XH, He T, Zhang B. 2010. Towards prediction of in vivo intestinal absorption using a 96-well Caco-2 assay. J Pharm Sci. 99(7):3246–3265.
  • Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, et al. 1999. Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res. 35(2):155–164.
  • Srikanth MV, Ram BJ, Sunil SA, Rao NS, Murthy KV. 2012. Development and validation of HPLC method for estimation of propranolol HCl in human plasma. JSIR. 71:120–123.
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. 2015. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 20(2):107–126.
  • Srivastava M, Kohli K, Ali M. 2014. Stability indicating RP-HPLC method for analysis of ketoprofen in bulk drug and eugenol containing nanoemulsion gel (NEG) formulation using response surface methodology. Curr Pharm Anal. 10(2):135–144.
  • Stockdale TP, Challinor VL, Lehmann RP, De Voss JJ, Blanchfield JT. 2019. Caco-2 monolayer permeability and stability of Chamaelirium luteum (false unicorn) open-chain steroidal saponins. ACS Omega. 4(4):7658–7666.
  • Sultana N, Arayne MS, Siddiqui R, Naveed S. 2012. RP-HPLC method for the simultaneous determination of lisinopril and NSAIDs in API, pharmaceutical formulations and human serum. Am J Anal Chem. 03(02):147–152.
  • Tajerzadeh H, Hamidi M. 2001. A simple HPLC method for quantitation of enalaprilat. J Pharm Biomed Anal. 24(4):675–680.
  • Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 141(5):769–776.
  • Wu JJ, Zhu YF, Guo ZZ, Lou YM, He SG, Guan Y, Zhu LJ, Liu ZQ, Lu LL, Liu L. 2018. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. Phytomedicine. 44:87–97.
  • Zhang L, Zheng Y, Chow MS, Zuo Z. 2004. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int J Pharm. 287(1–2):1–12.
  • Zucco F, Batto A-F, Bises G, Chambaz J, Chiusolo A, Consalvo R, Cross H, Dal Negro G, de Angelis I, Fabre G, et al. 2005. An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Altern Lab Anim. 33(6):603–618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.