349
Views
1
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Gliadin interacted with tea polyphenols: potential application and action mechanism

, , , , & ORCID Icon
Pages 786-799 | Received 09 Dec 2021, Accepted 12 May 2022, Published online: 23 May 2022

References

  • Aydin E, Gocmen D. 2011. Cooking quality and sensorial properties of noodle supplemented with oat flour. Food Sci Biotechnol. 20(2):507–511.
  • Bansal S, Vyas S, Bhattacharya S, Sharma M. 2013. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep. 30(11):1438–1454.
  • Barak S, Mudgil D, Khatkar BS. 2015. Biochemical and functional properties of wheat gliadins: a review. Crit Rev Food Sci Nutr. 55(3):357–368.
  • Barua AG, Hazarika S, Pathak JS, Kalita C. 2008. Spectroscopic investigation of the seeds of chilli (Capsicum annum L.). Int J Food Sci Nutr. 59(7-8):671–678.
  • Cao Y, Yang Z, Zhang H, Guo P, Dong S, Li H. 2020. Influence of potato pulp on gluten network structure in wheat dough and steamed bread. Cereal Chem. 97(2):226–234.
  • Cao ZB, Yu C, Yang Z, Xing JJ, Guo XN, Zhu KX. 2021. Impact of gluten quality on textural stability of cooked noodles and the underlying mechanism. Food Hydrocolloids. 119:106842.
  • Chen GH, Yang CY, Lee SJ, Wu CC, Tzen JTC. 2014. Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J Food Drug Anal. 22(3):303–309.
  • Chen N, Gao HX, He Q, Yu Z, Zeng WC. 2020. Interaction and action mechanism of starch with different phenolic compounds. Int J Food Sci Nutr. 71(6):726–737.
  • Dai T, Li R, Liu C, Liu W, Li T, Chen J, Khara M, McClements DJ. 2019. Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: a multiphotonic spectroscopy and molecular docking study. Food Hydrocolloids. 97:105234.
  • Ferrer EG, Bosch A, Yantorno O, Baran EJ. 2008. A spectroscopy approach for the study of the interactions of bioactive vanadium species with bovine serum albumin. Bioorg Med Chem. 16(7):3878–3886.
  • Gao MR, Xu QD, He Q, Sun Q, Zeng WC. 2019. A theoretical and experimental study: the influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay. Food Measure. 13(2):1349–1356.
  • Ge S, Li M, Ji N, Liu J, Mu H, Xiong L, Sun Q. 2018. Preparation of a strong gelatin-short linear glucan nanocomposite hydrogel by an in situ self-assembly process. J Agric Food Chem. 66(1):177–186.
  • Cyrkot S, Anders S, Kamprath C, Liu A, Mileski H, Dowhaniuk J, Nasser R, Marcon M, Brill H, Turner JM, et al. 2020. Folate content of gluten-free food purchases and dietary intake are low in children with coeliac disease. Int J Food Sci. Nutr. 71(7):863–874.
  • Görbitz CH. 2002. Peptide structures. Curr Opin Solid State Mat Sci. 6(2):109–116.
  • Hajjari MM, Golmakani MT, Sharif N. 2021. Fabrication and characterization of cuminaldehyde-loaded electrospun gliadin fiber mats. LWT-Food Sci Technol. 145:111373.
  • Han CW, Ma M, Zhang HH, Li M, Sun QJ. 2020. Progressive study of the effect of superfine green tea, soluble tea, and tea polyphenols on the physico-chemical and structural properties of wheat gluten in noodle system. Food Chem. 308:125676.
  • Hassan H, Elaridi J, Bassil M. 2017. Evaluation of gluten in gluten-free-labeled foods and assessment of exposure level to gluten among celiac patients in Lebanon. Int J Food Sci Nutr. 68(7):881–886.
  • Joye IJ, Davidov-Pardo G, Ludescher RD, McClements DJ. 2015. Fluorescence quenching study of resveratrol binding to zein and gliadin: towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chem. 185:261–267.
  • Kasarda DD, Autran JC, Lew EJL, Nimmo CC, Shewry PR. 1983. N-terminal amino acid sequences of ω-gliadins and ω-secalins: implications for the evolution of prolamin genes. Biochim Biophys Acta-Protein Struct Molec Enzym. 747(1-2):138–150.
  • Khan N, Mukhtar H. 2007. Tea polyphenols for health promotion. Life Sci. 81(7):519–533.
  • Khan N, Mukhtar H. 2018. Tea polyphenols in promotion of human health. Nutrients. 11(1):39.
  • Khatkar BS, Barak S, Mudgil D. 2013. Effects of gliadin addition on the rheological, microscopic and thermal characteristics of wheat gluten. Int J Biol Macromol. 53:38–41.
  • Leopoldini M, Russo N, Toscano M. 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125(2):288–306.
  • Li H, Aluko RE. 2006. Structural modulation of calmodulin and calmodulin-dependent protein kinase II by pea protein hydrolysates. Int J Food Sci Nutr. 57(3-4):178–189.
  • Li M, Zhang JH, Zhu KX, Peng W, Zhang SK, Wang B, Zhu YJ, Zhou HM. 2012. Effect of superfine green tea powder on the thermodynamic, rheological and fresh noodle making properties of wheat flour. LWT-Food Sci Technol. 46(1):23–28.
  • Li M, Yue Q, Liu C, Zheng X, Hong J, Li L, Bian K. 2020. Effect of gliadin/glutenin ratio on pasting, thermal, and structural properties of wheat starch. J Cereal Sci. 93:102973.
  • Liu C, Li M, Yang J, Xiong L, Sun Q. 2017. Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin. Food Hydrocolloids. 73:74–89.
  • Lorgeril MD, Salen P. 2014. Gluten and wheat intolerance today: are modern wheat strains involved? Int J Food Sci Nutr. 65(5):577–581.
  • Massounga BAF, Ma S, Li X, Liu L. 2018. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: review and recent advances. Food Res Int. 105:241–249.
  • Metakovsky EV, Branlard G, Chernakov VM, Upelniek VP, Redaelli R, Pogna NE. 1997. Recombination mapping of some chromosome 1A-, 1B-, 1D-and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theor Appl Genet. 94:788–795.
  • Ming Y, Chen L, Khan A, Wang H, Wang C. 2020. Effects of tea polyphenols on physicochemical and antioxidative properties of whey protein coating. Food Sci Biotechnol. 29(12):1655–1663.
  • Nielsen PM, Petersen D, Dambmann C. 2001. Improved method for determining food protein degree of hydrolysis. J Food Science. 66(5):642–646.
  • Pan J, Zhang H, Liu J, Jiang Y, Lv Y, Han J. 2021. Effects of catechins on the polymerisation behaviour, conformation and viscoelasticity of wheat gluten. Int J Food Sci Technol. 56(2):753–761.
  • Pérot M, Lupi R, Guyot S, Delayre-Orthez C, Gadonna-Widehem P, Thébaudin J-Y, Bodinier M, Larré C. 2017. Polyphenol interactions mitigate the immunogenicity and allergenicity of gliadins. J Agric Food Chem. 65(31):6442–6451.
  • Qiu C, Wang Y, Teng Y, Zhao M. 2017. Influence of glycosylation of deamidated wheat gliadin on its interaction mechanism with resveratrol. Food Chem. 221:431–438.
  • Rafieian F, Simonsen J. 2015. The effect of carboxylated nanocrystalline cellulose on the mechanical, thermal and barrier properties of cysteine cross-linked gliadin nanocomposite. Cellulose. 22(2):1175–1188.
  • Ramirez-Sanchez I, Maya L, Ceballos G, Villarreal F. 2010. Fluorescent detection of (-)-epicatechin in microsamples from cacao seeds and cocoa products: comparison with Folin-Ciocalteu method. J Food Compost Anal. 23(8):790–793.
  • Rumińska W, Szymańska-Chargot M, Wiącek D, Sobota A, Markiewicz KH, Wilczewska AZ, Miś A, Nawrocka A. 2020. FT-Raman and FT-IR studies of the gluten structure as a result of model dough supplementation with chosen oil pomaces. J Cereal Sci. 93:102961.
  • Song Y, Li L, Zheng Q. 2009. Influence of epichlorohydrin modification on structure and properties of wheat gliadin films. J Agric Food Chem. 57(6):2295–2301.
  • Van Buiten CB, Yennawar NH, Pacheco CN, Hatzakis E, Elias RJ. 2019. Physicochemical interactions with (-)-epigallocatechin-3-gallate drive structural modification of celiac-associated peptide α2-gliadin (57-89) at physiological conditions. Food Funct. 10(5):2997–3007.
  • Wang P, Zou M, Liu K, Gu Z, Yang R. 2018. Effect of mild thermal treatment on the polymerization behavior, conformation and viscoelasticity of wheat gliadin. Food Chem. 239:984–992.
  • Wang Q, Tang Y, Yang Y, Zhao J, Zhang Y, Li L, Wang Q, Ming J. 2020. Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods. Spectrochim Acta A Mol Biomol Spectrosc. 229:117937.
  • Wang Q, Tang Y, Yang Y, Lei L, Zhao J, Zhang Y, Li L, Wang Q, Ming J. 2021. Combined effects of quercetin and sodium chloride concentrations on wheat gliadin structure and physicochemical properties. J Sci Food Agric. 101(6):2511–2518.
  • Wieser H. 2007. Chemistry of gluten proteins. Food Microbiol. 24(2):115–119.
  • Xu M, Wu Y, Hou GG, Du X. 2019. Evaluation of different tea extracts on dough, textural, and functional properties of dry Chinese white salted noodle. LWT-Food Sci Technol. 101:456–462.
  • Ye Y, Zhang Y, Yan J, Zhang Y, He Z, Huang S, Quail KJ. 2009. Effects of flour extraction rate, added water, and salt on color and texture of Chinese white noodles. Cereal Chem. 86(4):477–485.
  • Yu K, Zhou HM, Zhu KX, Guo XN, Peng W. 2020. Water cooking stability of dried noodles enriched with different particle size and concentration green tea powders. Foods. 9(3):298.
  • Yuan W, Fan W, Mu Y, Meng D, Yan Z, Li Y, Lv Z. 2021. Baking intervention for the interaction behaviours between bamboo (Phyllostachys heterocycla) leaf flavonoids and gliadin. Ind Crop Prod. 164:113385.
  • Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9:40.
  • Zhang L, Cheng L, Jiang L, Wang Y, Yang G, He G. 2010. Effects of tannic acid on gluten protein structure, dough properties and bread quality of Chinese wheat. J Sci Food Agric. 90(14):2462–2468.
  • Zhang H, Qi R, Mine Y. 2019. The impact of oolong and black tea polyphenols on human health. Food Biosci. 29:55–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.