311
Views
0
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Choline and trimethylamine N-oxide supplementation in normal chow diet and western diet promotes the development of atherosclerosis in Apoe –/– mice through different mechanisms

, , , , , , , & show all
Pages 234-246 | Received 03 Dec 2022, Accepted 20 Feb 2023, Published online: 04 Apr 2023

References

  • Al J, Backhed F. 2017. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 14(2):79–87.
  • Aldana-Hernandez P, Leonard KA, Zhao YY, Curtis JM, Field CJ, Jacobs RL. 2020. Dietary Choline or Trimethylamine N-oxide Supplementation Does Not Influence Atherosclerosis Development in Ldlr–/– and Apoe–/– Male Mice. J Nutr. 150(2):249–255.
  • Chen H, Cheng J, Zhou S, Chen D, Qin W, Li C, Li H, Lin D, Zhang Q, Liu Y, et al. 2021. Arabinoxylan combined with different glucans improve lipid metabolism disorder by regulating bile acid and gut microbiota in mice fed with high-fat diet. Int J Biol Macromol. 168:279–288. (
  • Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang QY, Mi MT. 2016. Resveratrol attenuates trimethylamine-n-oxide (TMAO)-induced atherosclerosis by regulating TMAO Synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio. 7(2):e02210–02215.
  • Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. 2017. Trimethylamine-n-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. 6(9):e006347.
  • Collins HL, Adelman SJ, Butteiger DN, Bortz JD. 2022. choline supplementation does not promote atherosclerosis in CETP-expressing male apolipoprotein e knockout mice. Nutrients. 14(8):1651.
  • Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. 2019. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr. 10(suppl_1):S17–S30.
  • Duttaroy AK. 2021. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: a review. Nutrients. 13(1):144.
  • Fiorucci S, Distrutti E. 2015. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 21(11):702–714.
  • Galle-Treger L, Moreau M, Ballaire R, Poupel L, Huby T, Sasso E, Troise F, Poti F, Lesnik P, Le Goff W, et al. 2020. Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis. Cardiovasc Res. 116(3):554–565.
  • Geng J, Yang C, Wang B, Zhang X, Hu T, Gu Y, Li J. 2018. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother. 97(:941–947.
  • Genoni A, Christophersen CT, Lo J, Coghlan M, Boyce MC, Bird AR, Lyons-Wall P, Devine A. 2020. Long-term Paleolithic diet is associated with lower resistant starch intake, different gut microbiota composition and increased serum TMAO concentrations. Eur J Nutr. 59(5):1845–1858.
  • Guasch-Ferre M, Hu FB, Ruiz-Canela M, Bullo M, Toledo E, Wang DD, Corella D, Gomez-Gracia E, Fiol M, Estruch R, et al. 2017. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with Mediterranean diet). Study J Am Heart Assoc. 6(11):e006524.
  • Heianza Y, Ma W, Manson JE, Km R, Qi L. 2017. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 6(7):e004947.
  • Kim CW, Oh ET, Park HJ. 2021. A strategy to prevent atherosclerosis via TNF receptor regulation. Faseb J. 35(3):e21391.
  • Koay YC, Chen YC, Wali JA, Luk AWS, Li M, Doma H, Reimark R, Zaldivia MTK, Habtom HT, Franks AE, et al. 2021. Plasma levels of trimethylamine-N-oxide can be increased with ‘healthy’ and ‘unhealthy’ diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res. 117(2):435–449.
  • Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gerard P, Maguin E, Rhimi M. 2019. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res. 60(2):323–332.
  • Li K, Ching D, Luk FS, Raffai RL. 2015. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-kappaB-driven inflammation and atherosclerosis. Circ Res. 117(1):e1–e11.
  • Li R, Jiang Q, Zheng Y. 2021. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox-LDL through miR-326-3p/VAMP3 axis in atherosclerosis. J Cell Mol Med. 25(16):8028–8038.
  • Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, Windecker S, Rodondi N, Nanchen D, Muller O, et al. 2017. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 38(11):814–824.
  • Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. 2019. Atherosclerosis. Nat Rev Dis Primers. 5(1):56.
  • Liu J, Li Y, Sun C, Liu S, Yan Y, Pan H, Fan M, Xue L, Nie C, Zhang H, et al. 2020. Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids. Pharmacol Res. 152(104631):104631.,.
  • Liu S, He F, Zheng T, Wan S, Chen J, Yang F, Xu X, Pei X. 2021. Ligustrum robustum alleviates atherosclerosis by decreasing serum TMAO, modulating gut microbiota, and decreasing bile acid and cholesterol absorption in mice. Mol Nutr Food Res. 65(14):e2100014.
  • Ma Q, Chen J, Zhou X, Hu L, Sun Y, Wang Z, Yue Z, Shan A. 2021. Dietary supplementation with aromatic amino acids decreased triglycerides and alleviated hepatic steatosis by stimulating bile acid synthesis in mice. Food Funct. 12(1):267–277.
  • Porez G, Prawitt J, Gross B, Staels B. 2012. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res. 53(9):1723–1737.
  • Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS, Gupta M. 2018. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 276(:98–108.
  • Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM. 2016. Trimethylamine N-Oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc. 5(2):e002767.
  • Su C, Li X, Yang Y, Du Y, Zhang X, Wang L, Hong B. 2021. Metformin alleviates choline diet-induced TMAO elevation in C57BL/6J mice by influencing gut-microbiota composition and functionality. Nutr Diabetes. 11(1):27.
  • Tang WH, Kitai T, Hazen SL. 2017. Gut microbiota in cardiovascular health and disease. Circ Res. 120(7):1183–1196.
  • Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. 2020. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients. 12(10):2982.
  • Wang F, Zhao C, Tian G, Wei X, Ma Z, Cui J, Wei R, Bao Y, Kong W, Zheng J. 2020. Naringin alleviates atherosclerosis in ApoE(–/–) mice by regulating cholesterol metabolism involved in gut microbiota remodeling. J Agric Food Chem. 68(45):12651–12660.
  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472(7341):57–63.
  • Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL. 2014. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 35(14):904–910.
  • Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, Mcdaniel A, Schugar RC, Wang Z, et al. 2015. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 10(3):326–338.
  • Winston JA, Theriot CM. 2020. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 11(2):158–171.
  • Witkowski M, Weeks TL, Hazen SL. 2020. Gut microbiota and cardiovascular disease. Circ Res. 127(4):553–570.
  • Wolf D, Ley K. 2019. Immunity and inflammation in atherosclerosis. Circ Res. 124(2):315–327.
  • Yu D, Shu XO, Rivera ES, Zhang X, Cai Q, Calcutt MW, Xiang YB, Li H, Gao YT, Wang TJ, et al. 2019. Urinary levels of trimethylamine-n-oxide and incident coronary heart disease: a prospective investigation among urban chinese adults. J Am Heart Assoc. 8(1):e010606.
  • Yu J, Zhang H, Chen L, Ruan Y, Chen Y, Liu Q. 2021. Disease-associated gut microbiota reduces the profile of secondary bile acids in pediatric nonalcoholic fatty liver disease. Front Cell Infect Microbiol. 11(698852): 698852.
  • Zhang H, Ge S, Ni B, He K, Zhu P, Wu X, Shao Y. 2021. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy. 17(12):4218–4230.
  • Zhang L, Xie F, Tang H, Zhang X, Hu J, Zhong X, Gong N, Lai Y, Zhou M, Tian J, et al. 2022. Gut microbial metabolite TMAO increases peritoneal inflammation and peritonitis risk in peritoneal dialysis patients. Transl Res. 240:50–63. (
  • Zhang Q, Hu J, Wu Y, Luo H, Meng W, Xiao B, Xiao X, Zhou Z, Liu F. 2019. Rheb (Ras homolog enriched in brain 1) deficiency in mature macrophages prevents atherosclerosis by repressing macrophage proliferation, inflammation, and lipid uptake. ATVB. 39(9):1787–1801.
  • Zhou Q, Han X, Li R, Zhao W, Bai B, Yan C, Dong X. 2018. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine. 51(:171–180.
  • Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 165(1):111–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.