811
Views
0
CrossRef citations to date
0
Altmetric
Studies in humans

Excretion by subjects on a low (poly)phenol diet of phenolic gut microbiota catabolites sequestered in tissues or associated with catecholamines and surplus amino acids

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 532-543 | Received 10 Mar 2023, Accepted 12 Jun 2023, Published online: 27 Jun 2023

References

  • Alonso R, Gibson CJ, Wurtman RJ, Agharanya JC, Prieto L. 1982. Elevation of urinary catecholamines and their metabolites following tyrosine administration in humans. Biol Psychiatry. 17(7):781–790.
  • Barnes RC, Krenek KA, Meibohm B, Mertens-Talcott SU, Talcott ST. 2016. Urinary metabolites from mango (Mangifera indica L. cv. Keitt) galloyl derivatives and in vitro hydrolysis of gallotannins in physiological conditions. Mol Nutr Food Res. 60(3):542–550. doi: 10.1002/mnfr.201500706.
  • Borges G, Lean MEJ, Roberts SA, Crozier A. 2013. Bioavailability of dietary (poly)phenols: a study with ileostomists to discriminate between absorption in the small and large intestine. Food Funct. 4(5):754–762. doi: 10.1039/c3fo60024f.
  • Carregosa D, Pinto C, Ávila-Gálvez MA, Bastos P, Berry D, Nunes Santos C. 2022. A look beyond dietary (poly)phenols: the low molecular weight phenolic metabolites and their concentrations in human circulation. Compr Rev Food Sci Food Saf. 21(5):3931–3962. doi: 10.1111/1541-4337.13006.
  • Castello F, Costabile G, Bresciani L, Tassotti M, Naviglio D, Luongo D, Ciciola P, Vitale M, Vetrani C, Galaverna G, et al. 2018. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys. 646:1–9. doi: 10.1016/j.abb.2018.03.021.
  • Clarke D, Rollo ME, Collins CE, Wood L, Callister L, Philo M, Kroon PA, Haslam RL. 2020. The relationship between dietary polyphenol intakes and urinary polyphenol concentrations in adults prescribed a high vegetable and fruit diet. Nutrients. 12(11):3431. doi: 10.3390/nu12113431.
  • Clifford MN, Kuhnert N. 2022a. LC–MS characterisation and quantification of known and unknown (poly)phenol metabolites - possible pitfalls and their avoidance. Mol Nutr Food Res. 66(21):e2101013. doi: 10.1002/mnfr.202101013.
  • Clifford MN, Kerimi A, Williamson G. 2020. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. Compr Rev Food Sci Food Saf. 19(4):1299–1352. doi: 10.1111/1541-4337.12518.
  • Clifford MN, Laurence J, King LJ, Kerimi A, Pereira-Caro G, Williamson G. 2022b. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit. Rev. Food Sci. Nutr. 1–58. doi: 10.1080/10408398.2022.2131730.
  • Crozier A, Yokota T, Jaganath IB, Marks SC, Saltmarsh M, Clifford MN. 2006. Secondary metabolites as dietary components in plant-based foods and beverages. In: Crozier A, Clifford MN, Ashihara H, editors. Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing, Oxford, p. 208–302. ISBN-13: 978-1-4051-2509-3.
  • Curtius HC. 1973. Use of deuterated compounds in study of tyrosine-dopa metabolism in phenylketonuria. Angew Chem Int Ed Engl. 12(2):165–165. doi: 10.1002/anie.197301651.
  • Curtius HC, Völlmin JA, Baerlocher K. 1973b. Study of metabolic pathways in vivo using stable isotopes. Anal Chem. 45(7):1107–1110.
  • Curtius HC, Redweik U, Steinman B, Leimbacher W, Wegmann H. 1975. Use of deuterated tyrosine and phenylalanine in studies of catecholamine and aromatic acid metabolism. In: Klein ER, Klein PD, editors. Proceedings of the Second International Conference on Stable Isotopes, Oak Brook: Illinois; p. 385–391.
  • Curtius HC, Mettler M, Ettlinger L. 1976. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography–mass spectrometry. J Chromatogr. 126:569–−580. doi: 10.1016/s0021-9673(01)84102-9.
  • de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 171(13):3268–3282. doi: 10.1111/bph.12676.
  • Di Pede G, Mena P, Bresciani L, Almutairi TM, Del Rio D, Clifford MN, Crozier A. 2023. Human colonic catabolism of dietary flavan-3-ol bioactives. Mol Aspects Med. 89:101107. doi: 10.1016/j.mam.2022.101107.
  • Feliciano RP, Istas G, Heiss C, Rodriguez-Mateos A. 2016. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules. 21(9):1120. doi: 10.3390/molecules21091120.
  • Grümer HD. 1961. Formation of hippuric acid from phenylalanine labelled with carbon-14 in phenylketonuric subjects. Nature. 189(4758):63–64. doi: 10.1038/189063a0.
  • Jansman AJM, Verstegen MW, Huisman J, van den Berg JW. 1995. Effects of hulls of faba beans (Vicia faba L.) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenous protein in ileal digesta and feces of pigs. J Anim Sci. 73(1):118–127. doi: 10.2527/1995.731118x.
  • Jenner AM, J. Rafter J, Halliwell B. 2005. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med. 38(6):763–772. doi: 10.1016/j.freeradbiomed.2004.11.020.
  • Jones MR, Kopple JD, Swendseid ME. 1978. Phenylalanine metabolism in uremic and normal man. Kidney Int. 14(2):169–179. doi: 10.1038/ki.1978.104.
  • Kahle K, Kempf M, Schreier P, Scheppach W, Schrenk D, Kautenburger T, Hecker D, Huemmer W, Ackermann M, Richling E. 2011. Intestinal transit and systemic metabolism of apple polyphenols. Eur J Nutr. 50(7):507–522. doi: 10.1007/s00394-010-0157-0.
  • Kay CD, Clifford MN, Mena P, McDougall GJ, Andres-Lacueva C, Cassidy A, Del Rio D, Kuhnert N, Manach C, Pereira-Caro G, et al. 2020. Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. Am J Clin Nutr. 112(4):1051–1068. − doi: 10.1093/ajcn/nqaa204.
  • Lang R, Dieminger N, Beusch A, Lee YM, Dunkel A, Suess B, Skurk T, Wahl A, Hauner H, Hofmann T. 2013. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal Bioanal Chem. 405(26):8487–8503. doi: 10.1007/s00216-013-7288-0.
  • Lonati E, Carrozzini T, Bruni I, Mena P, Botto L, Cazzaniga E, Del Rio D, Labra M, Palestini P, Bulbarelli A. 2022. Coffee-derived phenolic compounds activate Nrf2 antioxidant pathway in I/R Injury in vitro model: a nutritional approach preventing age related-damages. Molecules. 27(3):1049. doi: 10.3390/molecules27031049.
  • Munro HN. 1976. Absorption and metabolism of amino acids with special emphasis on phenylalanine. J Toxicol Environ Health. 2(1):189–206. doi: 10.1080/15287397609529426.
  • Ottaviani JI, Borges G, Momma T, Spencer JPE, Keen CL, Crozier A, Schroeter H. 2016. Metabolic fate of [2-14C](–)-epicatechin in humans: wider implications for biomedical assessment of efficacy, safety, and mechanisms of action of polyphenol bioactives. Sci Rep. 6:29034. doi: 10.1038/srep29034.
  • Ordoñez-Díaz JL, Moreno-Ortega A, Roldán-Guerra FJ, Ortíz-Somovilla V, Moreno-Rojas JM, Pereira-Caro G. 2020. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera indica L.) pulp polyphenols. Foods. 9(12):1836. doi: 10.3390/foods9121836.
  • Ottaviani JI, Britten A, Lucarelli D, Luben R, Mulligan AA, Lentjes MA, Fong R, Gray N, Grace PB, Mawson DH, et al. 2020. Biomaker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci Rep. 10(1):17994. doi: 10.1038/s41598-020-74863-7.
  • Pereira-Caro G, Borges G, van der Hooft J, Clifford MN, Del Rio D, Lean MEJ, Roberts SA, Kellerhals MB, Crozier A. 2014. Orange juice (poly)phenols are highly bioavailable in humans. Am J Clin Nutr. 100(5):1378–1384. doi: 10.3945/ajcn.114.090282.
  • Pereira-Caro G, Borges G, Ky I, Ribas A, Calani L, Del Rio D, Clifford MN, Roberts SA, Crozier A. 2015. In vitro colonic catabolism of orange juice (poly)phenols. Mol Nutr Food Res. 59(3):465–475. doi: 10.1002/mnfr.201400779.
  • Pereira-Caro G, Ludwig IA, Polyviou T, Malkova D, Garcia A, Moreno-Rojas JM, Crozier A. 2016. Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: analysis by high performance liquid chromatography-high resolution-mass spectrometry. J Agric Food Chem. 64(28):5724–5735. doi: 10.1021/acs.jafc.6b02088.
  • Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A. 2017. Bioavailability of black tea theaflavins in humans: absorption, metabolisms and colonic catabolism. J Agric Food Chem. 65(26):5365–5374. doi: 10.1021/acs.jafc.7b01707.
  • Pereira-Caro G, Fernández-Quirós B, Ludwig IA, Pradas I, Crozier A, Moreno-Rojas JM. 2018. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur J Nutr. 57(1):231–242. doi: 10.1007/s00394-016-1312-z.
  • Pimpão RC, Dew T, Figueira ME, McDougall GJ, Stewart D, Ferreira RB, Santos CN, Williamson G. 2014. Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Mol Nutr Food Res. 58(7):1414–1425. doi: 10.1002/mnfr.201300822.
  • Rios LY, Gonthier MP, Remesy C, Mila I, Lapierre C, Lazarus SA, Williamson G, Scalbert A. 2003. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr. 77(4):912–918. doi: 10.1093/ajcn/77.4.912.
  • Schantz M, Erk T, Richling E. 2010. Metabolism of green tea catechins by the human small intestine. Biotechnol J. 5(10):1050–1059. doi: 10.1002/biot.201000214.
  • Stalmach A, Mullen W, Steiling H, Williamson G, Lean MEJ, Crozier A. 2010a. Absorption, metabolism, efflux and excretion of green tea flavan-3-ols in humans with an ileostomy. Mol Nutr Food Res. 54(3):323–334. doi: 10.1002/mnfr.200900194.
  • Stalmach A, Steiling H, Williamson G, Crozier A. 2010b. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys. 501(1):98–105. doi: 10.1016/j.abb.2010.03.005.
  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Dayk CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, et al. 2007. Proposed minimum reporting standards for chemical analysis. Chemical analysis working group (CAWG) Metabolic Standards Initiative (MSI). Metabolomics. 3(3):211–221. doi: 10.1007/s11306-007-0082-2.
  • Truchado P, Larrosa M, Garcia-Conesa MT, Cerda B, Vidal-Guevara ML, Tomás-Barberán FA, Espin JC. 2012. Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J Agric Food Chem. 60(23):5749–5754. doi: 10.1021/jf203641r.
  • Van Rymenant E, Grootaert C, Beerens K, Need PW, Kroon PA, Kerimi A, Williamson G, García-Villalba R, González-Sarrías A, Tomás-Barberán F, et al. 2017. Vasorelaxant activity of twenty-one physiologically relevant (poly)phenolic metabolites on isolated mouse arteries. Food Funct. 8(12):4331–4335. doi: 10.1039/c7fo01273j.
  • Verzelloni E, Pellacani C, Tagliazucchi D, Tagliaferri S, Calani L, Costa LG, Brighenti F, Borges G, Crozier A, Conte A, et al. 2011. Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites. Mol Nutr Food Res. 55(S1):S35–S43. doi: 10.1002/mnfr.201000525.
  • Williamson G, Clifford MN. 2010. Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr. 104(S3):S48–S66. doi: 10.1017/S0007114510003946.
  • Williamson G, Kay CD, Crozier A. 2018. The bioavailability, transport and bioactivity of dietary flavonoids: a review from a historical perspective. Compr Rev Food Sci Food Saf. 17(5):1054–1112. doi: 10.1111/1541-4337.12351.
  • Xu Y, Li Y, Ma X, Alotaibi W, Le Saye M, Cheok A, Wood E, Hein S, Yang PYT, Hall WL, et al. 2023. Comparison between dietary assessment methods and biomarkers in estimating dietary (poly) phenol intake. Food Funct. 14(3):1369–1386. doi: 10.1039/d2fo02755k.
  • Yu F, Barry TN, McNabb WC, Moughan PJ, Wilson GF. 1995. Effect of bound condensed tannin from cottonseed upon in situ protein solubility and dry matter digestion in the rumen. J Sci Food Agric. 69(3):311–319. doi: 10.1002/jsfa.2740690307.