7,183
Views
34
CrossRef citations to date
0
Altmetric
Research Papers

Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry

, , , , & ORCID Icon
Pages 2977-2985 | Received 24 Jul 2018, Accepted 03 Feb 2019, Published online: 11 Apr 2019

References

  • Thaut MH, McIntosh GC, Rice RR. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci. 1998;151(2):207–212.
  • Von Schroeder HP, Coutts RD, Lyden PD, et al. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32:25–31.
  • Olney SJ, Richards C. Hemiparetic gait following stroke. Part 1: characteristics. Gait Posture. 1996;4:136–148.
  • Wall JC, Turnbull GI. Gait asymmetries in residual hemiplegia. Arch Phys Med Rehabil. 1986;67(8):550–553.
  • Chen G, Patten C, Kothari DH, et al. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–56.
  • Titianova EB, Tarkka IM. Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. J Rehabil Res Dev. 1995;32(3):236–244.
  • Riener R, Lünenburger L, Maier I, et al. Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis Lokomat. J Healthc Eng. 2010;2:197–216.
  • Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37:693–700.
  • Duschau-Wicke A, von Zitzewitz J, Caprez A, et al. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18:38–48.
  • Riener R, Lünenburger L, Jezernik S, et al. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–394.
  • Dobkin BH. Neurobiology of rehabilitation. Ann N Y Acad Sci. 2004;1038(1):148–170.
  • Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93(2):1099–1103.
  • Lotze M. Motor learning elicited by voluntary drive. Brain. 2003;126(4):866–872.
  • Ivanenko YP, Grasso R, Macellari V, et al. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. J Neurophysiol. 2002;87(6):3070–3089.
  • Hof AL, Elzinga H, Grimmius W, et al. Speed dependence of averaged EMG profiles in walking. Gait Posture. 2002;16(1):78–86.
  • Den Otter AR, Geurts ACH, Mulder T, et al. Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004;19(3):270–278.
  • Lamontagne A, Fung J. Faster is better. Stroke. 2004;35(11):2543–2548.
  • Burnfield JM, Buster TW, Goldman AJ, et al. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation. Human Mov Sci. 2016;47:16–28.
  • Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther. 1991;71:842–855.
  • Hesse S, Helm B, Krajnik J, et al. Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. J Neurol Rehab. 1997;11(1):15–20.
  • Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Arch Phys Med Rehabil. 1999;80(4):421–427.
  • van Kammen K, Boonstra AM, van der Woude LH, et al. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin Biomech. 2016;36:65–73.
  • Van Kammen K, Boonstra A, Reinders-Messelink H, et al. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PloS One. 2014;9(9):e107323.
  • Perry J. Gait analysis: normal and pathological function. New York: McGraw Hill, Inc. 1992.
  • Dietz V, Berger W. Interlimb coordination of posture in patients with spastic paresis. Brain. 1984;107(3):965–978.
  • Lamontagne A, Richards CL, Malouin F. Coactivation during gait as an adaptive behavior after stroke. J Electromyogr Kinesiol. 2000;10:407–415.
  • Den Otter AR, Geurts, ACH, Mulder T, et al. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture. 2007;25:342–352.
  • Buurke JH, Nene AV, Kwakkel G, et al. Recovery of gait after stroke: what changes? NeuroRehabil Neural Repair. 2008;22:676–683.
  • Balasubramanian CK, Neptune RR, Kautz SA. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture. 2009;29(3):408–414.
  • Patterson KK, Parafianowicz I, Danells CJ, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89:304–310.
  • Patterson KK, Gage WH, Brooks D, et al. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture. 2010;31(2):241–246.
  • Jørgensen L, Crabtree NJ, Reeve J, et al. Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone. 2000;27(5):701–707.
  • Van Kammen K, Boonstra AM, van der Woude LHV, et al. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J of Neuroeng Rehabil. 2017;14(1):32.
  • Holden MK, Gill KM, Magliozzi MR, et al. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64:35–40.
  • Cockrell JR, Folstein MF. Mini-mental state examination. In: Copeland JRM, Abou-Saleh MT, Blazer DG, editors. Principles and practice of geriatric psychiatry. Chichester: Wiley; 2002. p. 140–141.
  • World Medical Association. World Medical Association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194.
  • Mayr A, Kofler M, Quirbach E, et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–314.
  • Coenen P, van Werven G, van Nunen MP, et al. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity. J Rehabil Med. 2012;44:331–337.
  • Krewer C, Müller F, Husemann B, et al. The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait Posture. 2007;26(3):372–377.
  • Knaepen K, Mierau A, Swinnen E, et al. Human-robot interaction: does robotic guidance force affect gait-related brain dynamics during robot-assisted treadmill walking? PLoS One. 2015;10(10):e0140626.
  • Duschau-Wicke A, Caprez A, Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010;7(43):1–13.
  • Hussain S, Xie SQ, Liu G. Robot assisted treadmill training: mechanisms and training strategies. Med Eng Phys. 2011;33(5):527–533.
  • Freriks B, Hermens H, Disselhorst-Klug C, et al. The recommendations for sensor and sensor placement procedures for surface electromyography. In: Hermens H, editor. European recommendations for surface electromyography. Enschede: Roessingh Research and Development; 1999. p. 15–53.
  • Mukherjee M, Eikema DJA, Chien JH, et al. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation. Exp Brain Res. 2015;233(10):3005–3012.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;289–300.
  • Moreno JC, Barroso F, Farina D, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:79.
  • Chen G, Patten C, Kothari DH, et al. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture. 2005;22(1):57–62.
  • Hassid E, Rose D, Commisarow J, et al. Improved gait symmetry in hemiparetic stroke patients induced during body weight-supported treadmill stepping. J Neurol Rehab. 1997;11(1):21–26.
  • Schuler TA, Müller R, Van Hedel HJ. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. J Neuroeng Rehabil. 2013;10(1):78.
  • Israel JF, Campbell DD, Kahn JH, et al. Metabolic costs and muscle activity patterns during robotic-and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86(11):1466–1478.
  • Banz R, Bolliger M, Muller S, et al. A method of estimating the degree of active participation during stepping in a driven gait orthosis based on actuator force profile matching. IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):15–22.
  • Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.
  • Koenig A, Wellner M, Koneke S, et al. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 2008;132:204–209.
  • Brutsch K, Schuler T, Koenig A, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.
  • Calabrò RS, Cacciola A, Bertè F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4):503–514.
  • Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005;20:184–193.