3,063
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Predictors of exoskeleton motor learning in spinal cord injured patients

ORCID Icon, , , &
Pages 1982-1988 | Received 28 Jun 2019, Accepted 03 Nov 2019, Published online: 14 Nov 2019

References

  • Díaz I, Gil JJ, Sánchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 2011;2011:1–11.
  • Chen G, Chan CK, Guo Z, et al. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng. 2013;41(4–5):343–363.
  • Calabrò RS, Cacciola A, Bertè F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4):503–514.
  • Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehab. 2017;14:24.
  • Bruni MF, Melegari C, De Cola MC, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018;48:11–17.
  • Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil Neural Repair. 2012;26(9):1058–1063.
  • Baunsgaard C, Nissen U, Brust A, et al. Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med. 2018;50(9):806–813.
  • Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Dev. 2016;9:455–466.
  • Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics article. Spinal Cord. 2018;56:106–116.
  • van Dijsseldonk RB, Rijken H, van Nes IJW, et al. A framework for measuring the progress in exoskeleton skills in people with complete spinal cord injury. Front Neurosci. 2017;11:1–12.
  • Kozlowski A, Bryce T, Dijkers M. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015;21(2):110–121.
  • Platz T, Gillner A, Borgwaldt N, et al. Device-training for individuals with thoracic and lumbar spinal cord injury using a powered exoskeleton for technically assisted mobility: achievements and user satisfaction. Biomed Res Int. 2016;2016:1–10.
  • Spungen AM, Asseslin PK, Fineberg DB, et al. Exoskeletal-assisted walking for persons with motor-complete paraplegia. NATO Sci Technol Org. 2013;6(1):6–14.
  • Kilkens OJ, Dallmeijer AJ, Angenot E, et al. Subject- and injury-related factors influencing the course of manual wheelchair skill performance during initial inpatient rehabilitation of persons with spinal cord injury. Arch Phys Med Rehabil. 2005;86(11):2119–2125.
  • Teeter L, Gassaway J, Taylor S, et al. Relationship of physical therapy inpatient rehabilitation interventions and patient characteristics to outcomes following spinal cord injury: the SCIRehab project. J Spinal Cord Med. 2012;35(6):503–526.
  • Hardy L, Mullen R, Martin N. Effect of task-relevant cues and state anxiety on motor performance. Percept Mot Skills. 2001;92(3):943.
  • Mullen R, Hardy L, Tattersall A. The effects of anxiety on motor performance: a test of the conscious processing hypothesis. J Sport Exerc Psychol. 2005;27(2):212–225.
  • van Dijsseldonk RB, van Nes IJW, Rijken H, et al. RehabMove 2018: a framework of exoskeleton-skills-tests in patients with complete spinal cord injury. 6th International RehabMove State-Of-The-Art Congress 2018, 12–14 December, Groningen, The Netherlands. 2019. p. 6–8.
  • Weggemans RM, Backx FJG, Borghouts L, et al. The 2017 Dutch physical activity guidelines. Int J Behav Nutr Phys Act. 2018;15(1):58–69.
  • Spinhoven PH, Ormel J, Sloekers PPA, et al. A validation study of the Hospital Anxiety and Depression Scale (HADS) in different groups of Dutch subjects. Psychol Med. 1997;27(2):363–370.
  • Schönherr MC, Groothoff JW, Mulder GA, et al. Functional outcome of patients with spinal cord injury: rehabilitation outcome study. Clin Rehabil. 1999;13(6):457–463.
  • Dahlberg A, Kotila M, Kautiainen H, et al. Functional independence in persons with spinal cord injury in Helsinki. J Rehabil Med. 2003;35(5):217–220.
  • Kilkens OJ, Dallmeijer AJ, Nene AV, et al. The longitudinal relation between physical capacity and wheelchair skill performance during inpatient rehabilitation of people with spinal cord injury. Arch Phys Med Rehabil. 2005;86(8):1575–1581.
  • Altmann VC, Groen BE, Groenen KH, et al. Construct validity of the trunk impairment classification system in relation to objective measures of trunk impairment. Arch Phys Med Rehabil. 2016;97(3):437–444.
  • Dhawale AK, Smith MA, Ölveczky BP. Adaptive process in motor learning: the role of variability. Annu Rev Neurosci. 2017;40(1):479–498.
  • Wu HG, Miyamoto YR, Castro LNG, et al. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci. 2014;17(2):312–321.