1,913
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Acute improvement in the attention network with repetitive transcranial magnetic stimulation in Parkinson’s disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7958-7966 | Received 11 Feb 2021, Accepted 05 Nov 2021, Published online: 17 Nov 2021

References

  • Anderson JR. Cognitive psychology and its implications. New York (NY): Worth Publishers; 2004.
  • Aarsland D, Bronnick K, Williams-Gray C, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–1069.
  • Cristinzio C, Bononi M, Piacentini S, et al. Attentional networks in Parkinson’s disease. Behav Neurol. 2013;27(4):495–500.
  • Fan J, McCandliss BD, Sommer T, et al. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14(3):340–347.
  • Fan J, McCandliss B, Fossella J, et al. The activation of attentional networks. Neuroimage. 2005;26(2):471–479.
  • Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13(1):25–42.
  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–215.
  • McHugh MJ, Gu H, Yang Y, et al. Executive control network connectivity strength protects against relapse to cocaine use. Addict Biol. 2017;22(6):1790–1801.
  • Hobkirk AL, Bell RP, Utevsky AV, et al. Reward and executive control network resting-state functional connectivity is associated with impulsivity during reward-based decision making for cocaine users. Drug Alcohol Depend. 2019;194:32–39.
  • Oyegbile TO, VanMeter JW, Motamedi G, et al. Executive dysfunction is associated with an altered executive control network in pediatric temporal lobe epilepsy. Epilepsy Behav. 2018;86:145–152.
  • Cohen RM, Semple WE, Gross M, et al. Functional localization of sustained attention: comparison to sensory stimulation in the absence of instruction. Neuropsychiatry Neuropsychol Behav Neurol. 1988;1(1):3–20.
  • Callejas A, Lupiàñez J, Funes MJ, et al. Modulations among the alerting, orienting and executive control networks. Exp Brain Res. 2005;167(1):27–37.
  • Xuan B, Mackie MA, Spagna A, et al. The activation of interactive attentional networks. Neuroimage. 2016;129:308–319.
  • Boord P, Madhyastha TM, Askren MK, et al. Executive attention networks show altered relationship with default mode network in PD. Neuroimage Clin. 2017;13:1–8.
  • Shukla AW, Shuster JJ, Chung JW, et al. Repetitive transcranial magnetic stimulation (rTMS) therapy in Parkinson disease: a meta-analysis. PM R. 2016;8(4):356–366.
  • Aftanas LI, Brack IV, Kulikova KI, et al. Clinical and neurophysiological effects of dual-target high-frequency rTMS over the primary motor and prefrontal cortex in Parkinson's disease. Zh Nevrol Psikhiatr Im S S Korsakova. 2020;120(5):29–36.
  • Brys M, Fox MD, Agarwal S, et al. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: a randomized trial. Neurology. 2016;87(18):1907–1915.
  • Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202.
  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9(1):357–381.
  • Koch G, Oliveri M, Brusa L, et al. High-frequency rTMS improves time perception in Parkinson disease. Neurology. 2004;63(12):2405–2406.
  • Beyer MK, Janvin CC, Larsen JP, et al. A magnetic resonance imaging study of patients with Parkinson's disease with mild cognitive impairment and dementia using voxel-based morphometry. J Neurol Neurosurg Psychiatry. 2007;78(3):254–259.
  • Sanchez-Lopez A, De Raedt R, Puttevils L, et al. Combined effects of tDCS over the left DLPFC and gaze-contingent training on attention mechanisms of emotion regulation in low-resilient individuals. Prog Neuropsychopharmacol Biol Psychiatry. 2021;108:110177.
  • Banich MT, Milham MP, Atchley RA, et al. Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. Brain Res Cogn Brain Res. 2000;10(1–2):1–9.
  • Clarke PJ, Browning M, Hammond G, et al. The causal role of the dorsolateral prefrontal cortex in the modification of attentional bias: evidence from transcranial direct current stimulation. Biol Psychiatry. 2014;76(12):946–952.
  • Trung J, Hanganu A, Jobert S, et al. Transcranial magnetic stimulation improves cognition over time in Parkinson's disease. Parkinsonism Relat Disord. 2019;66:3–8.
  • Cho SS, Strafella AP. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLOS One. 2009;4(8):e6725.
  • Srovnalova H, Marecek R, Kubikova R, et al. The role of the right dorsolateral prefrontal cortex in the Tower of London task performance: repetitive transcranial magnetic stimulation study in patients with Parkinson's disease. Exp Brain Res. 2012;223(2):251–257.
  • Boggio PS, Fregni F, Bermpohl F, et al. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's disease and concurrent depression. Mov Disord. 2005;20(9):1178–1184.
  • Randver R. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex to alleviate depression and cognitive impairment associated with Parkinson's disease: a review and clinical implications. J Neurol Sci. 2018;393:88–99.
  • Khedr EM, Mohamed KO, Ali AM, et al. The effect of repetitive transcranial magnetic stimulation on cognitive impairment in Parkinson's disease with dementia: pilot study. Restor Neurol Neurosci. 2020;38(1):55–66.
  • Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–184.
  • Beck AT, Ward CH, Mendelson M, et al. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4(6):561–571.
  • Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–427.
  • Fahn S, Elton R, Members of the UPDRS development committee. Unified Parkinson's disease rating scale. In: Fahn S, Marsden CD, Calne DB, editors. Recent developments in Parkinson’s disease. Florham Park (NJ): Macmillan Health Care Information; 1987. p. 153–163.
  • Ridgel AL, Peacock CA, Fickes EJ, et al. Active-assisted cycling improves tremor and bradykinesia in Parkinson's disease. Arch Phys Med Rehabil. 2012;93(11):2049–2054.
  • MacDonald PA, MacDonald AA, Seergobin KN, et al. The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson's disease: support from functional MRI. Brain. 2011;134(Pt 5):1447–1463.
  • Reitan RM. Validity of the trail making test as an indicator of organic brain damage. Percept Motor Skills. 1958;8(3):271–276.
  • Garrido-Vásquez P, Pell MD, Paulmann S, et al. Impaired neural processing of dynamic faces in left-onset Parkinson's disease. Neuropsychologia. 2016;82:123–133.
  • Wechsler DW. Adult intelligence scale-III. New York (NY): Psychological Corporation; 1997.
  • Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976;12(4):313–324.
  • Parker SM, Erin JR, Pryor RR, et al. The effect of prolonged light intensity exercise in the heat on executive function. Wilderness Environ Med. 2013;24(3):203–210.
  • Stroop JR. Studies of interference in serial verbal reactions (reprinted from Journal of Experimental Psychology, Vol 18, 643–662, 1935). J Exp Psychol. 1992;121(1):15–23.
  • Wang C, An Y, Yu H, et al. Association between exposure to the Chinese famine in different stages of early life and decline in cognitive functioning in adulthood. Front Behav Neurosci. 2016;10:146.
  • Kudlicka A, Clare L, Hindle JV. Executive functions in Parkinson's disease: systematic review and meta-analysis. Mov Disord. 2011;26(13):2305–2315.
  • Hurtado MM, Triviño M, Arnedo M, et al. Are executive functions related to emotional intelligence? A correlational study in schizophrenia and borderline personality disorder. Psychiatry Res. 2016;246:84–88.
  • Li S, Ou R, Yuan X, et al. Executive dysfunctions and behavioral changes in early drug-naïve patients with Parkinson's disease. J Affect Disord. 2019;243:525–530.
  • Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson's disease: a review. J Neuropsychol. 2013;7(2):193–224.
  • Stuss DT, Alexander MP. Executive functions and the frontal lobes: a conceptual view. Psychol Res. 2000;63(3–4):289–298.
  • Furukawa T, Izumi S, Toyokura M, et al. Effects of low-frequency repetitive transcranial magnetic stimulation in Parkinson's disease. Tokai J Exp Clin Med. 2009;34(3):63–71.
  • Yoshii F, Onaka H, Kohara S, et al. Early detection of cognitive impairment in Parkinson's disease with the use of the Wisconsin Card Sorting Test: correlations with Montreal Cognitive Assessment and Smell Identification Test. J Neural Transm. 2019;126(11):1447–1454.
  • Gardizi E, King JP, McNeely HE, et al. Comparability of the WCST and WCST-64 in the assessment of first-episode psychosis. Psychol Assess. 2019;31(2):271–276.
  • Lange F, Brückner C, Knebel A, et al. Executive dysfunction in Parkinson's disease: a meta-analysis on the Wisconsin Card Sorting Test literature. Neurosci Biobehav Rev. 2018;93:38–56.
  • Chiu EC, Wu WC, Hung JW, et al. Validity of the Wisconsin Card Sorting Test in patients with stroke. Disabil Rehabil. 2018;40(16):1967–1971.
  • Huang ML, Luo BY, Hu JB, et al. Repetitive transcranial magnetic stimulation in combination with citalopram in young patients with first-episode major depressive disorder: a double-blind, randomized, sham-controlled trial. Aust N Z J Psychiatry. 2012;46(3):257–264.
  • Matsui H, Nishinaka K, Oda M, et al. Wisconsin Card Sorting Test and brain perfusion imaging in Parkinson's disease. Parkinsonism Relat Disord. 2006;12(5):273–278.
  • Elliott R. Executive functions and their disorders. Br Med Bull. 2003;65(1):49–59.
  • Friedman NP, Miyake A. Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex. 2017;86:186–204.
  • Williams JMG, Mathews A, MacLeod C. The emotional Stroop task and psychopathology. Psychol Bull. 1996;120(1):3–24.
  • Ozonoff S, Pennington BF, Rogers SJ. Executive function deficits in high-functioning autistic individuals: relationship to theory of mind. J Child Psychol Psychiatry. 1991;32(7):1081–1105.
  • Logue SF, Gould TJ. The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav. 2014;123:45–54.
  • Leroi I, Barraclough M, McKie S, et al. Dopaminergic influences on executive function and impulsive behaviour in impulse control disorders in Parkinson's disease. J Neuropsychol. 2013;7(2):306–325.
  • Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci. 2010;11(11):760–772.
  • Hazy TE, Frank MJ, O'Reilly RC. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1601–1613.
  • Seminowicz DA, de Martino E, Schabrun SM, et al. Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain. Pain. 2018;159(12):2486–2492.
  • Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001;98(12):6917–6922.
  • Jiang Y, Guo Z, McClure MA, et al. Effect of rTMS on Parkinson's cognitive function: a systematic review and meta-analysis. BMC Neurol. 2020;20(1):377.
  • Málly J, Geisz N, Dinya E. Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson’s disease. Brain Res Bull. 2017;135:98–104.
  • Aleman A, van't Wout M. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex disrupts digit span task performance. Neuropsychobiology. 2008;57(1–2):44–48.
  • Abbasnia K, Ghanbari A, Abedian M, et al. The effects of repetitive transcranial magnetic stimulation on proliferation and differentiation of neural stem cells. Anat Cell Biol. 2015;48(2):104–113.
  • Pauletti C, Mannarelli D, Locuratolo N, et al. Attention in Parkinson's disease with fatigue: evidence from the attention network test. J Neural Transm. 2017;124(3):335–345.
  • Posner MI. Imaging attention networks. Neuroimage. 2012;61(2):450–456.
  • Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;302(5648):1181–1185.
  • Esser SK, Huber R, Massimini M, et al. A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull. 2006;69(1):86–94.
  • González-García N, Armony JL, Soto J, et al. Effects of rTMS on Parkinson's disease: a longitudinal fMRI study. J Neurol. 2011;258(7):1268–1280.