2,293
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Real-time auditory feedback may reduce abnormal movements in patients with chronic stroke

ORCID Icon, , , , , , & show all
Pages 613-619 | Received 08 Aug 2021, Accepted 30 Jan 2022, Published online: 03 Mar 2022

References

  • Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–E492.
  • Abdullahi A. Effects of number of repetitions and number of hours of shaping practice during Constraint-Induced movement therapy: a randomized controlled Trial. Neurol Res Int. 2018; 2018:5496408–5496408.
  • Lang CE, MacDonald JR, Reisman DS, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–1698.
  • Pain LM, Baker R, Richardson D, et al. Effect of trunk-restraint training on function and compensatory trunk, shoulder and elbow patterns during post-stroke reach: a systematic review. Disabil Rehabil. 2015;37:553–562.
  • Murata Y, Higo N, Oishi T, et al. Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys. J Neurophysiol. 2008;99(2):773–786.
  • Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the queen square programme. J Neurol Neurosurg Psychiatry. 2019;90(5):498–506.
  • Daly JJ, McCabe JP, Holcomb J, et al. Long-dose intensive therapy is necessary for strong, clinically significant, upper limb functional gains and retained gains in severe/moderate chronic stroke. Neurorehabil Neural Repair. 2019;33(7):523–537.
  • McCabe J, Monkiewicz M, Holcomb J, et al. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–990.
  • Michaelsen SM, Dannenbaum R, Levin MF. Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke. 2006;37(1):186–192.
  • Wang Q, Markopoulos P, Yu B, et al. Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil BioMed Central. 2017;14(1):20.
  • Yungher D, Craelius W. Improving fine motor function after brain injury using gesture recognition biofeedback. Disabil Rehabil Assist Technol. 2012;7(6):464–468.
  • Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehab. 2009;6(1):1–13.
  • Valdés BA, Schneider AN, Van der Loos HFM. Reducing trunk compensation in stroke survivors: a randomized crossover trial comparing visual and force feedback modalities. Arch Phys Med Rehabil. 2017;98(10):1932–1940.
  • Kelly K, Brander F, Strawson A, et al. Pushing the limits of recovery in chronic stroke survivors: a descriptive qualitative study of users perceptions of the queen square upper limb neurorehabilitation programme. BMJ Open. 2020;10(10):e036481.
  • Cao Z, Simon T, Wei SE, et al. Realtime multi-person 2D pose estimation using part affinity fields. Proc – 30th IEEE Conf Comput Vis Pattern Recognition, CVPR. 2017;2017:7291–7299.
  • Wei SE, Ramakrishna V, Kanade T, et al. Convolutional pose machines. Proceedings of the IEEE Computer Society Conference on computer vision and pattern recognition. 2016. p. 4724–4732.
  • Fiebrink R, Trueman D, Cook PR. The Wekinator: Software for using machine learning to build real-time interactive systems. 2011.
  • Valdés BA, Van der Loos HFM. Biofeedback vs. game scores for reducing trunk compensation after stroke: a randomized crossover trial. Top Stroke Rehabil. 2018;25(2):96–113.
  • Valdes Benavides BA. Reducing compensatory movements in stroke therapy through the use of robotic devices and augmented feedback. Vancouver: University of British Columbia; 2017.
  • Sihvonen AJ, Särkämö T, Leo V, et al. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017;16(8):648–660.
  • Davis WB, Gfeller KE, Thaut M. An introduction to music therapy: theory and practice. Silver Spring: American Music Therapy Association; 2008.
  • Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci. 2007;8(7):547–558.
  • Thaut MH, McIntosh GC, Rice RR, et al. Rhythmic auditory stimulation in gait training for parkinson’s disease patients. Mov Disord. 1996;11(2):193–200.
  • Altenmüller E, Stewart L. Music supported therapy in neurorehabilitation. In: Dietz V, Ward NS, editors. Oxford textb neurorehabilitation. 2nd ed. Oxford: Oxford University Press; 2020.
  • Bradt J, Magee WL, Dileo C, et al. Music therapy for acquired brain injury. Bradt J, editor. Cochrane Database Syst Rev. 2010;2016:CD006787.
  • van Wijck F, Knox D, Dodds C, et al. Making music after stroke: using musical activities to enhance arm function. Ann NY Acad Sci. 2012;1252:305–311.
  • Kirk P, Grierson M, Bodak R, et al. Motivating stroke rehabilitation through music: a feasibility study using digital musical instruments in the home. Proceedings of the 2016 CHI conference on human factors Computer Systems. 2016. p. 1781–1785.
  • Nudo RJ, Wise BM, SiFuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794.