321
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot observational study

, , , , , & show all
Pages 2640-2649 | Received 14 Feb 2023, Accepted 18 Jun 2023, Published online: 29 Jun 2023

References

  • Kwakkel G, Kollen BJ, van der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–2186. doi: 10.1161/01.STR.0000087172.16305.CD.
  • de Jong LD, van Wijck F, Stewart RE, et al. Content of conventional therapy for the severely affected arm during subacute rehabilitation after stroke: an analysis of physiotherapy and occupational therapy practice. Physiother. Res. Int. 2018;23(1):e1683. doi: 10.1002/pri.1683.
  • Weber LM, Stein J. The use of robots in stroke rehabilitation: a narrative review. NeuroRehabilitation. 2018;43(1):99–110. doi: 10.3233/NRE-172408.
  • Gandhi DBC, Sterba A, Khatter H, et al. Mirror therapy in stroke rehabilitation: current perspectives. TCRM. 2020;ume 16:75–85. doi: 10.2147/TCRM.S206883.
  • Banduni O, Saini M, Singh N, et al. Post-Stroke rehabilitation of distal upper limb with new perspective technologies : virtual reality and repetitive transcranial magnetic stimulation—a mini review. JCM. 2023;12(8):2944. doi: 10.3390/jcm12082944.
  • Nath D, Singh N, Saini M, et al. Design and validation of virtual reality task for Neuro-Rehabilitation of distal upper extremities. IJERPH. 2022;19(3):1442. doi: 10.3390/ijerph19031442.
  • Lee HS, Park YJ, Park SW. The effects of virtual reality training on function in chronic stroke patients: a systematic review and meta-analysis. Biomed Res. Int. 2019;2019:1–12. doi: 10.1155/2019/7595639.
  • Gibbons EM, Thomson AN, de Noronha M, et al. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke–a systematic review with meta-analysis. Top Stroke Rehabil. 2016;23(6):440–457. doi: 10.1080/10749357.2016.1183349.
  • Shin J-H, Kim M-Y, Lee J-Y, et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehab. 2016;13(1):17. doi: 10.1186/s12984-016-0125-x.
  • Adamovich SV, Fluet GG, Mathai A, et al. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehab. 2009;6(1):1–10.
  • Friedman N, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehab. 2014;11(1):1–14.
  • Connelly L, Jia Y, Toro ML, et al. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng. 2010;18(5):551–559. doi: 10.1109/TNSRE.2010.2047588.
  • Deutsch JE, James-Palmer A, Damodaran H, et al. Comparison of neuromuscular and cardiovascular exercise intensity and enjoyment between standard of care, off-the-shelf and custom active video games for promotion of physical activity of persons post-stroke. J Neuroeng Rehab. 2021;18(1):1–12.
  • French B, Thomas LH, Leathley MJ, et al. Repetitive task training for improving functional ability after stroke. Stroke. 2009;40(4):e98–e99. doi: 10.1161/STROKEAHA.108.519553.
  • Nudo RJ, Wise BM, SiFuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794. doi: 10.1126/science.272.5269.1791.
  • Aminov A, Rogers JM, Middleton S, et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J NeuroEngineering Rehabil. 2018;15(1):1–24. doi: 10.1186/s12984-018-0370-2.
  • Kreisel SH, Hennerici MG, Bäzner H. Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc Dis. 2007;23(4):243–255. doi: 10.1159/000098323.
  • See J, Dodakian L, Chou C, et al. A standardized approach to the Fugl-Meyer assessment and its implications for clinical trials. Neurorehabil Neural Repair. 2013;27(8):732–741. doi: 10.1177/1545968313491000.
  • Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN committee. Clin Neurophysiol. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001.
  • Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63(10):1606–1610. doi: 10.1093/ptj/63.10.1606.
  • Singh N, Saini M, Anand S, et al. Robotic exoskeleton for wrist and fingers joint in Post-Stroke Neuro-Rehabilitation for Low-Resource settings. IEEE Trans Neural Syst Rehabil Eng. 2019;27(12):2369–2377. doi: 10.1109/TNSRE.2019.2943005.
  • Hobart JC, Riazi A, Lamping DL, et al. Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome. Health Technol Assess. 2004;8(9):iii–i48.
  • Rosso C, Lamy J-C. Does resting motor threshold predict motor hand recovery after stroke? Front. Neurol. 2018;9:1020. doi: 10.3389/fneur.2018.01020.
  • Di Lazzaro V, Profice P, Pilato F, et al. Motor cortex plasticity predicts recovery in acute stroke. Cereb Cortex. 2010;20(7):1523–1528. doi: 10.1093/cercor/bhp216.
  • Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2006;117(8):1641–1659. doi: 10.1016/j.clinph.2006.01.016.
  • Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimul. 2015;8(6):1183–1190. doi: 10.1016/j.brs.2015.06.015.
  • Singh N, Saini M, Kumar N, et al. Time-Frequency analysis of Motor-Evoked potential in patients with stroke vs healthy subjects: a transcranial magnetic stimulation study. SN Compr Clin Med. 2019;1(10):764–780. doi: 10.1007/s42399-019-00113-1.
  • Bütefisch CM, Netz J, Wessling M, et al. Remote changes in cortical excitability after stroke. Brain. 2003;126(2):470–481.
  • Saini M, Singh N, Kumar N, et al. A novel perspective of associativity of upper limb motor impairment and cortical excitability in Sub-acute and chronic stroke. Front Neurosci. 2022;16:832121. doi: 10.3389/fnins.2022.832121.
  • Takeuchi N, Izumi S-I. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013:1–13. doi: 10.1155/2013/128641.
  • Carey L, Walsh A, Adikari A, et al. Finding the intersection of neuroplasticity, stroke recovery, and learning: scope and contributions to stroke rehabilitation. Neural Plast. 2019;2019:1–15. doi: 10.1155/2019/5232374.
  • Huynh W, Vucic S, Krishnan AV, et al. Exploring the evolution of cortical excitability following acute stroke. Neurorehabil Neural Repair. 2016;30(3):244–257. doi: 10.1177/1545968315593804.
  • Takeuchi N, Izumi S-I. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012;2012:1–9. doi: 10.1155/2012/359728.
  • Luk KY, Ouyang HX, Pang MYC. Low-Frequency rTMS over contralesional M1 increases ipsilesional cortical excitability and motor function with decreased interhemispheric asymmetry in subacute stroke: a randomized controlled study. Neural Plast. 2022;2022:1–13. doi: 10.1155/2022/3815357.
  • Dodd KC, Nair VA, Prabhakaran V. Role of the contralesional vs. ipsilesional hemisphere in stroke recovery. Front Hum Neurosci. 2017;11:469. doi: 10.3389/fnhum.2017.00469.
  • Alamri A, Eid M, Iglesias R, et al. Haptic virtual rehabilitation exercises for poststroke diagnosis. IEEE Trans Instrum Meas. 2008;57(9):1876–1884. doi: 10.1109/TIM.2008.919878.
  • Burcal CJ, Haggerty A, Grooms DR. Using virtual reality to treat perceptual and neurocognitive impairments after lower extremity injury. Athl Train Sport Heal Care. 2021;13(6):e453–e459.
  • Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349.
  • Subramanian SK, Lourenço CB, Chilingaryan G, et al. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23. doi: 10.1177/1545968312449695.
  • Saposnik G, Teasell R, Mamdani M, et al. Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010;41(7):1477–1484. doi: 10.1161/STROKEAHA.110.584979.
  • Mekbib DB, Zhao Z, Wang J, et al. Proactive motor functional recovery following immersive virtual reality–based limb mirroring therapy in patients with subacute stroke. Neurotherapeutics. 2020;17(4):1919–1930. doi: 10.1007/s13311-020-00882-x.
  • Singh N, Saini M, Kumar N, et al. Evidence of neuroplasticity with robotic hand exoskeleton for post ‑ stroke rehabilitation : a randomized controlled trial. J Neuroeng Rehab. 2021;18(1):1–15.
  • Kubis N. Non-invasive brain stimulation to enhance post-stroke recovery. Front Neural Circuits. 2016;10:56. doi: 10.3389/fncir.2016.00056.
  • Inukai Y, Saito K, Sasaki R, et al. Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci. 2016;10:668. doi: 10.3389/fnhum.2016.00668.
  • Hu J, Li C, Hua Y, et al. Constrained-induced movement therapy promotes motor function recovery by enhancing the remodeling of ipsilesional corticospinal tract in rats after stroke. Brain Res. 2019;1708:27–35. doi: 10.1016/j.brainres.2018.11.011.
  • Ji S-G, Cha H-G, Kim M-K. Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation combined with mirror therapy. J. Magn. 2014;19(1):28–31. doi: 10.4283/JMAG.2014.19.1.028.
  • Vourvopoulos A, Pardo OM, Lefebvre S, et al. Effects of a brain-computer interface with virtual reality (VR) neurofeedback: a pilot study in chronic stroke patients. Front Hum Neurosci. 2019;13:210. doi: 10.3389/fnhum.2019.00210.
  • Nath D, Singh N, Saini M, et al. Clinical effectiveness of non-immersive virtual reality tasks for post-stroke neuro-rehabilitation of distal upper-extremities : a case report. JCM. 2022;12(1):92. doi: 10.3390/jcm12010092.
  • Xie H, Zhang H, Liang H, et al. A novel glasses-free virtual reality rehabilitation system on improving upper limb motor function among patients with stroke: a feasibility pilot study. Med Nov Technol Devices. 2021;11:100069. doi: 10.1016/j.medntd.2021.100069.
  • Patel J, Fluet G, Qiu Q, et al. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early Sub-acute periods post-stroke: a feasibility study. J Neuroeng Rehab. 2019;16:1–12.
  • Yarossi M, Adamovich S, Tunik E. Sensorimotor cortex reorganization in subacute and chronic stroke: a neuronavigated TMS study. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014. Chicago (IL), p. 5788–5791.
  • Wang L, Liu J, Lan J. Feature evaluation of upper limb exercise rehabilitation interactive system based on kinect. IEEE Access. 2019;7:165985–165996. doi: 10.1109/ACCESS.2019.2953228.
  • Chen Y, Abel KT, Janecek JT, et al. Home-based technologies for stroke rehabilitation: a systematic review. Int J Med Inform. 2019;123:11–22. doi: 10.1016/j.ijmedinf.2018.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.