2,158
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system

, , , , , , , & show all
Pages 11-19 | Received 01 Feb 2013, Accepted 29 Sep 2013, Published online: 30 Jan 2014

References

  • Ahmadjian, V. (1993). The lichen symbiosis. John Wiley & Sons, New York.
  • Altschul, S.F., Madden, T.L., Schaeffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25: 3389–3402.
  • Antoine, M.E. (2004). An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist, 107: 82–87.
  • Arnold, A.E., Miadlikowska, J., Higgins, K.L., Sarvate, S.D., Gugger, P., Way, A., Hofstetter, V., Kauff, F. & Lutzoni, F. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Systematic Biology, 58: 283–297.
  • Barron, A.R., Wurzburger, N., Bellenger, J.P., Wright, S.J., Kraepiel, A.M.L. & Hedin, L.O. (2009). Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience, 2: 42–45.
  • Bates, S.T., Cropsey, G.W.G., Caporaso, J.G., Knight, R. & Fierer, N. (2011). Bacterial communities associated with the lichen symbiosis. Applied and Environmental Microbiology, 77: 1309–1314.
  • Bellenger, J.P., Wichard, T., Xu, Y. & Kraepiel, A.M.L. (2011). Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environmental Microbiology, 13: 1395–1411.
  • Belnap, J. (2001). Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In Biological soil crusts: structure, function, and management, ecological studies series 150 (Belnap, J. & Lange, O.L., editors), 241–261. Springer, Berlin.
  • Betancourt, D.A., Loveless, T.M., Brown, J.W. & Bishop, P.E. (2008). Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Applied and Environmental Microbiology, 74: 3471–3480.
  • Bishop, P.E. & Joerger, R.D. (1990). Genetics and molecular biology of alternative nitrogen fixation systems. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 109–125.
  • Blacklock, N.E., Goldsmith, F.B. & Patriquin, D.G. (1980). Nitrogen fixation (C2H2 reduction) by lungwort lichen (Lobaria pulmonaria (L.) Hoffm.) on red maple (Acer rubrum L.). Proceedings of the Nova Scotian Institute of Science, 30: 89–107.
  • Boison, G., Steingen, C., Stal, L.J. & Bothe, H. (2006). The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase. Archives of Microbiology, 186: 367–376.
  • Boyd, E.S., Hamilton, T.L. & Peters, J.W. (2011). An alternative path for the evolution of biological nitrogen fixation. Frontiers in Microbiology, 2(205): 1–11.
  • Brigle, K.E., Newton, W.E. & Dean, D.R. (1985). Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene, 37: 37–44.
  • Cardinale, M., Steinová, J., Rabensteiner, J., Berg, G. & Grube, M. (2012). Age, sun and substrate: triggers of bacterial communities in lichens. Environmental Microbiology Reports, 4: 23–28.
  • Cassar, N., Bellenger, J.P., Karr, J., Jackson, R.B., Karr, J. & Barnett, B.A. (2012). N2 fixation estimates in real-time by cavity ring-down laser absorption spectroscopy. Oecologia, 168: 335–342.
  • Chisnell, J.R., Premakumar, R. & Bishop, P.E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology, 170: 27–33.
  • Crittenden, P.D. & Kershaw, K.A. (1978). Discovering the role of lichens in the nitrogen cycle in boreal-arctic ecosystems. Bryologist, 81: 258–267.
  • Cusack, D.F., Silver, W. & McDowell, W.H. (2009). Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, 12: 1299–1315.
  • Davis, S.C., Parton, W.J., Dohleman, F.G., Smith, C.M., Del Grosso, S., Kent, A.D. & DeLucia, E.H. (2010). Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems, 13: 144–156.
  • Dilworth, M.J., Eady, R.R. & Eldridge, M.E. (1988). The vanadium nitrogenase of Azotobacter chroococcum: reduction of acetylene and ethylene to ethane. Biochemical Journal, 249: 745–751.
  • Eady, R.R. (1989). The vanadium nitrogenase of Azotobacter. Polyhedron, 8: 1695–1700.
  • Eady, R.R. (1996). Structure–function relationships of alternative nitrogenases. Chemical Reviews, 96: 3013–3030.
  • Eady, R.R. (2003). Current status of structure function relationships of vanadium nitrogenase. Coordination Chemistry Reviews, 237: 23–30.
  • Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M. & Lowe, D.J. (1988). The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the Fe protein. Biochemical Journal, 256: 189–196.
  • Erickson, R.L. (1973). Crustal abundance of elements, and mineral reserves and resources. In United States Mineral Resources, Geological Survey Professional Paper 820 (Brobts, D.A. & Pratt, W.P., editors), 21–25. United States Government Printing Office, Washington, D.C.
  • Georgiadis, M.M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J.J. & Rees, D.C. (1992). Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 257: 1653–1659.
  • Gillum, W.O., Mortenson, L.E., Chen, J.S. & Holm, R.H. (1977). Quantitative extrusions of the Fe4S4 cores of the active sites of ferredoxins and the hydrogenase of Clostridium pasteurianum. Journal of the American Chemical Society, 99: 584–595.
  • Gu, X., Fu, Y.X. & Li, W.H. (1995). Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution, 12: 546–557.
  • Gunther, A.J. (1989). Nitrogen fixation by lichens in a subarctic Alaskan watershed. Bryologist, 92: 202–208.
  • Hales, B.J., Langosch, D.J. & Case, E.E. (1986a). Isolation and characterization of a second nitrogenase Fe-protein from Azotobacter vinelandii. Journal of Biological Chemistry, 261: 15301–15306.
  • Hales, B.J., Case, E.E., Morningstar, J.E., Dzeda, M.F. & Mauterer, L.A. (1986b). Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry, 25: 7251–7255.
  • Hällbom, L. & Bergman, B. (1979). Influence of certain herbicides and a forest fertilizer on the nitrogen fixation by the lichen Peltigera praetextata. Oecologia, 40: 19–27.
  • Hardy, R.W.F., Holsten, R.D., Jackson, E.K. & Burns, R.C. (1968). Acetylene ethylene assay for N fixation – laboratory and field evaluation. Plant Physiology, 43: 1185–1207.
  • Hausinger, R.P. & Howard, J.B. (1983). Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. Journal of Biological Chemistry, 258: 13486–13492.
  • Hodkinson, B.P. (2011). A phylogenetic, ecological, and functional characterization of the lichen microbiome. PhD thesis, Duke University, Durham, North Carolina, U.S.A.
  • Hodkinson, B.P. & Lutzoni, F. (2009). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49: 163–180.
  • Hodkinson, B.P., Gottel, N.R., Schadt, C.W. & Lutzoni, F. (2012a). Data from: Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Dryad Digital Repository, DOI:10.5061/dryad.t99b1.
  • Hodkinson, B.P., Gottel, N.R., Schadt, C.W. & Lutzoni, F. (2012b). Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environmental Microbiology, 14: 147–161.
  • Joerger, R.D., Loveless, T.M., Pau, R.N., Mitchenall, L.A., Simon, B.H. & Bishop, P.E. (1990). Nucleotide sequences and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii. Journal of Bacteriology, 172: 3400–3408.
  • Koch, B. & Evans, H.J. (1990). Reduction of acetylene to ethylene by soybean root nodules. Plant Physiology, 41: 1748–1750.
  • Kurina, L.M. & Vitousek, P.M. (2001). Nitrogen fixation rates of Stereocaulon vulcani on young Hawaiian lava flows. Biogeochemistry, 55: 179–194.
  • Kutsche, M., Leimkühler, S., Angermüller, S. & Klipp, W. (1996). Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of sigma54, and repressed by molybdenum. Journal of Bacteriology, 178: 2010–2017.
  • Maddison, W.P. & Maddison, D.R. (2010). Mesquite: a modular system for evolutionary analysis version 2.74. http://mesquiteproject.org
  • Magain, N., Forrest, L.L., Sérusiaux, E. & Goffinet, B. (2010). Microsatellite primers in the Peltigera dolichorhiza complex (lichenized ascomycete, Peltigerales). American Journal of Botany, 97: e102–e104.
  • Masukawa, H., Zhang, X., Yamazaki, E., Iwata, S., Nakamura, K., Mochimaru, M., Inoue, K. & Sakurai, H. (2009). Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Marine Biotechnology, 11: 397–409.
  • Matzek, V. & Vitousek, P. (2003). Nitrogen fixation in bryophytes, lichens, and decaying wood along a soil–age gradient in Hawaiian montane rain forest. Biotropica, 35: 12–19.
  • Mayrose, I., Friedman, N. & Pupko, T. (2005). A Gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics, 21: ii151–ii158.
  • McKinlay, J.B. & Harwood, C.S. (2011). Harnessing bacteria that use light to produce hydrogen. Microbe, 6: 345–351.
  • Meyer, F., Paarmann, D., D’souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J. & Edwards, R.A. (2008). The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9: 386.
  • Miadlikowska, J. & Lutzoni, F. (2004). Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. American Journal of Botany, 91: 449–464.
  • Miller, R.W. & Eady, R.R. (1988). Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Biochemistry Journal, 256: 429–432.
  • Minin, V., Abdo, Z., Joyce, P. & Sullivan, J. (2003). Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology, 52: 674–683.
  • Nash, T.H., III. (2008a). Nitrogen, its metabolism and potential contribution to ecosystems. In Lichen biology, 2nd edition (Nash, T.H., III, editor), 216–233. Cambridge University Press, Cambridge.
  • Nash, T.H., III. (2008b). Nutrients, elemental accumulation and mineral cycling. In Lichen biology, 2nd edition (Nash, T.H., III, editor), 234–251. Cambridge University Press, Cambridge.
  • O’Brien, H.E., Miadlikowska, J. & Lutzoni, F. (2005). Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. European Journal of Phycology, 40: 363–378.
  • Pattengale, N., Alipour, M., Bininda-Emonds, O., Moret, B. & Stamatakis, A. (2009). How many bootstrap replicates are necessary? In Lecture Notes in Computer Science: Research in Computational Molecular Biology, Volume 5541 (Batzoglou, S., editor), 184–200. Springer, Berlin.
  • Pinto-Tomás, A.A., Anderson, M.A., Suen, G., Stevenson, D.M., Chu, F.S.T., Cleland, W.W., Weimer, P.J. & Currie, C.R. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science, 326: 1120–1123.
  • Posada, D. & Crandall, K.A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14: 817–818.
  • Pratte, B.S., Eplin, K. & Thiel, T. (2006). Cross-functionality of nitrogenase components NifH1 and VnfH in Anabaena variabilis. Journal of Bacteriology, 188: 5806–5811.
  • Premakumar, R., Pau, R.N., Mitchenall, L.A., Easo, M. & Bishop, P.E. (1998). Regulation of the transcriptional activators AnfA and VnfA by metals and ammonium in Azotobacter vinelandii. FEMS Microbiology Letters, 164: 63–68.
  • Raina, R., Bageshwar, U.K. & Das, H.K. (1993). The ORF encoding a putative ferredoxin-like protein downstream of the vnfH gene in Azotobacter vinelandii is involved in the vanadium-dependent alternative pathway of nitrogen fixation. Molecular and General Genetics, 236: 459–462.
  • Raymond, J., Siefert, J.L., Staples, C.R. & Blankenship, R.E. (2004). The natural history of nitrogen fixation. Molecular Biology and Evolution, 21: 541–554.
  • Reed, S.C., Cleveland, C.C. & Townsend, A.R. (2011). Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution and Systematics, 42: 489–512.
  • Ren, F., Tanaka, H. &, Yang, Z. (2005). An empirical examination of the utility of codon-substitution models in phylogeny reconstruction. Systematic Biology, 54: 808–818.
  • Robson, R.L., Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M. & Postgate, J.R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322: 388–390.
  • Robson, R.L., Woodley, P.R., Pau, R.N. & Eady, R.R. (1989). Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. EMBO Journal, 8: 1217–1224.
  • Schneider, T., Schmid, E., de Castro, J.V., Cardinale, M., Eberl, L., Grube, M., Berg, G. & Riedel, K. (2011). Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics, 11: 2752–2756.
  • Schollhorn, R. & Burris, R.H. (1966). Study of intermediates in nitrogen fixation. Federation Proceedings, 25: 710.
  • Silvester, W.B. (1989). Molybdenum limitation of asymbiotic nitrogen-fixation in forests of Pacific Northwest America. Soil Biology and Biochemistry, 21: 283–289.
  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688–2690.
  • Stewart, W.D.P., Fitzgerald, G.P. & Burris, R.H. (1967). In situ studies on N fixation using acetylene reduction technique. Proceedings of the National Academy of Sciences of the United States of America, 58: 2071–2078.
  • Sullivan, J., Swofford, D. & Naylor, G. (1999). The effect of taxon sampling on estimating rate heterogeneity parameters of maximum-likelihood models. Molecular Biology and Evolution, 16: 1347–1356.
  • Thiel , T. (1993). Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. Journal of Bacteriology, 175: 6276–6286.
  • Thiel, T. (1996). Isolation and characterization of the VnfEN genes of the cyanobacterium Anabaena variabilis. Journal of Bacteriology, 178: 4493–4499.
  • Thiel, T., Meeks, J.C., Elhai, J., Potts, M., Larimer, F., Lamerdin, J., Predki, P. & Atlas, R. (2002). Nitrogen fixation: analysis of the genome of the cyanobacterium Nostoc punctiforme. In Nitrogen fixation: global perspectives (Finan, T.M., O’Brian, M.R., Layzell, D.B., Vessey, J.K. & Newton, W., editors), 88–92. CABI Publishing, New York.
  • Tschermak-Woess, E. (1988). The algal partner. In CRC Handbook of Lichenology (Galun, M., editor), 39–92. CRC Press, Boca Raton, FL.
  • U’Ren, J., Lutzoni, F., Miadlikowska, J. & Arnold, A.E. (2010). Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microbial Ecology, 60: 340–353.
  • U’Ren, J.M., Lutzoni, F., Miadlikowska, J., Laetsch, A.D. & Arnold, A.E. (2012). Host and geographic structure of endophytic and endolichenic fungi at a continental scale. American Journal of Botany, 99: 898–914.
  • Walmsley, J. & Kennedy, C. (1991). Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding three nitrogenases in Azotobacter vinelandii. Applied and Environmental Microbiology, 57: 622–624.
  • Wedepohl, K.H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217–1232.
  • Wurzburger, N., Bellenger, J.P., Kraepiel, A.M.L. & Hedin, L.O. (2012). Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS ONE, 7: e33710.
  • Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution, 10: 1396–1401.
  • Yang, Z. (2006). Computational Molecular Evolution. Oxford University Press, Oxford.
  • Young, J. (2005). The phylogeny and evolution of nitrogenases. In Genomes and genomics of nitrogen-fixing organisms [nitrogen fixation: origins, applications, and research progress, Vol. 3] (Palacios, R. & Newton, W.E., editors), 221–241. Springer, Dordrecht.
  • Xavier, B.B., Miao, V.P.W., Jónsson, Z.O. & Andrésson, Ó.S. (2012). Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biology, 116: 802–814.
  • Zehr, J.P., Jenkins, B.D., Short, S.M. & Steward, G.F. (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology, 5: 539–554.
  • Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7: 203–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.