1,391
Views
21
CrossRef citations to date
0
Altmetric
Articles

An integrated wavelength-shifting strategy for enhancement of microalgal growth rate in PMMA- and polycarbonate-based photobioreactors

, , &
Pages 324-331 | Received 14 Oct 2013, Accepted 06 Mar 2014, Published online: 16 Jul 2014

References

  • Borowitzka, M. (2013). High-value products from microalgae – their development and commercialisation. Journal of Applied Phycology, 25: 743–756.
  • Castenholz, R.W. (1997). Multiple strategies for UV tolerance in cyanobacteria. The Spectrum, 10: 10–16.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25: 294–306.
  • Chrismadha, T. & Borowitzka, M. (1994). Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. Journal of Applied Phycology, 6: 67–74.
  • Danesi, E.D.G., Rangel-Yagui, C.O., Carvalho, J.C.M. & Sato, S. (2004). Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 26: 329–335.
  • Delavari Amrei, H., Nasernejad, B., Ranjbar, R. and Rastegar, S. (2013). Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria. Journal of Applied Phycology, doi:10.1007/s10811-013-0187-0.
  • Estevez, M.S., Malanga, G. & Puntarulo, S. (2001). UV-B effects on Antarctic Chlorella sp cells. Journal of Photochemistry and Photobiology B, 62: 19–25.
  • Helbling, E.W., Villafane, V., Ferrario, M. & Holm-Hansen, O. (1992). Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Marine Ecology Progress Series, 80: 89–100.
  • Herrmann, H., Häder, D.P. & Ghetti, F. (1997). Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR. Plant, Cell and Environment, 20: 359–365.
  • Hirata, S., Taya, M. & Tone, S. (1998). Continuous cultures of Spirulina platensis under photoautotrophic conditions with change in light intensity. Journal of Chemical Engineering of Japan, 31: 636–639.
  • Holzinger, A. & Lütz, C. (2006). Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron, 37: 190–207.
  • Hovel, H.J., Hodgson, R.T. & Woodall, J.M. (1979). The effect of fluorescent wavelength shifting on solar cell spectral response. Solar Energy Materials, 2: 19–29.
  • Imamoglu, E., Dalay, M. & Sukan, F. (2010). Semi-continuous cultivation of Haematococcus pluvialis for commercial production. Applied Biochemistry and Biotechnology, 160: 764–772.
  • Karatay, S.E. & Dönmez, G. (2011). Microbial oil production from thermophile cyanobacteria for biodiesel production. Applied Energy, 88: 3632–3635.
  • Katsuda, T., Shimahara, K., Shiraishi, H., Yamagami, K., Ranjbar, R. & Katoh, S. (2006). Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering, 102: 442–446.
  • Katsuda, T., Shiraishi, H., Ishizu, N., Ranjbar, R. & Katoh, S. (2008). Effect of light intensity and frequency of flashing light from blue light emitting diodes on astaxanthin production by Haematococcus pluvialis. Journal of Bioscience and Bioengineering, 105: 216–220.
  • Klampaftis, E., Ross, D., McIntosh, K.R. & Richards, B.S. (2009). Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Solar Energy Materials and Solar Cell, 93: 1182–1194.
  • Kohen, E., Santus, R. & Hirschberg, G.G. (1995). Photobiology. Academic Press, New York, NY.
  • Lee, C.-G. & Palsson, B.Ø. (1994). High-density algal photobioreactors using light-emitting diodes. Biotechnology and Bioengineering, 44: 1161–1167.
  • Li, Y., Horsman, M., Wang, B., Wu, N. & Lan, C. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81: 629–636.
  • Matthijs, H.C.P., Balke, H., van Hes, U.M., Kroon, B.M.A., Mur, L.R. & Binot, R.A. (1996). Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering, 50: 98–107.
  • McCree, K.J. (1972). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural and Forest Meteorology, 9: 191–216.
  • Mohsenpour, S.F. & Willoughby, N. (2013). Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology, 142: 147–153.
  • Navntoft, C., Dawidowski, L., Blesa, M.A., Fernandez-Ibanez, P., Wolfram, E.A. & Paladini, A. (2009). UV-A (315–400 nm) irradiance from measurements at 380 nm for solar water treatment and disinfection: comparison between model and measurements in Buenos Aires, Argentina and Almeria, Spain. Solar Energy, 83: 280–286.
  • Prokop, A., Quinn, M.F., Fekri, M., Murad, M. & Ahmed, S.A. (1984). Spectral shifting by dyes to enhance algae growth. Biotechnology and Bioengineering, 26: 1313–1322.
  • Ranjbar, R., Inoue, R., Katsuda, T., Yamaji, H. & Katoh, S. (2008). High efficiency production of astaxanthin in an airlift photobioreactor. Journal of Bioscience and Bioengineering, 106: 204–207.
  • Rowan, B.C., Wilson, L.R. & Richards, B.S. (2008). Advanced material concepts for luminescent solar concentrators. IEEE Journal of Selected Topics in Quantum Electronics, 14: 1312–1322.
  • Sinha, R.P., Klisch, M., Gröniger, A. & Häder, D.P. (1998). Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. Journal of Photochemistry and Photobiology B, 47: 83–94.
  • Slooff, L.H., Kinderman, R., Burgers, A.R., Bakker, N.J., van Roosmalen, J.A.M. & Richards, B.S. (2006). Luminescent layers for enhanced silicon solar cell performance: down-conversion. Solar Energy Materials and Solar Cell, 90: 1189–1207.
  • Solovchenko, A. (2010). Photoprotection in Plants; Optical Screening-based Mechanisms. Springer-Verlag, Berlin.
  • Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Svrcek, V., del Cañizo, C. & Tobias, I. (2007). Modifying the solar spectrum to enhance silicon solar cell efficiency – an overview of available materials. Solar Energy Materials and Solar Cell, 91: 238–249.
  • Sukenik, A. (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology, 35: 263–269.
  • Turcsányi, E. & Vass, I. (2000). Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem II complex. Photochemistry and Photobiology, 72: 513–520.
  • Van Sark, W.G. (2008). Simulating performance of solar cells with spectral downshifting layers. Thin Solid Films, 516: 6808–6812.
  • Van Sark, W.G., Meijerink, A., Schropp, R.E.I., van Roosmalen, J.A.M. & Lysen, E.H. (2005). Enhancing solar cell efficiency by using spectral converters. Solar Energy Materials and Solar Cell, 87: 395–409.
  • Wang, W.J., Sun, X.T., Wang, G.C., Xu, P., Wang, X.Y., Lin, Z.L. & Wang, F.J. (2010). Effect of blue light on indoor seedling culture of Saccharina japonica (Phaeophyta). Journal of Applied Phycology, 22: 737–744.
  • White, A.L. & Jahnke, L.S. (2002). Contrasting effects of UV-A and UV-B on photosynthesis and photoprotection of beta-carotene in two Dunaliella spp. Plant and Cell Physiology, 43: 877–884.
  • Wondraczek, L., Batentschuk, M., Schmidt, M.A., Borchardt, R., Scheiner, S., Seemann, B., Schweizer, P. & Brabec, C.J. (2013). Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nature Communication 4: 2047. doi:10.1038/ncomms3047.
  • Xia, Q., Batentschuk, M., Osvet, A., Richter, P., P. Häder, D.P., Schneider,J., Brabec, C.J., Wondraczek, L. & Winnacker, A. (2013). Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material. Optics Express, 21: A909–A916.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.