1,407
Views
14
CrossRef citations to date
0
Altmetric
Articles

Herbivore-induced defence response in the brown seaweed Fucus vesiculosus (Phaeophyceae): temporal pattern and gene expression

, , , &
Pages 356-369 | Received 01 Nov 2013, Accepted 01 Apr 2014, Published online: 04 Sep 2014

References

  • Agrawal, A.A. (2005). Future directions in the study of induced plant responses to herbivory. Entomologia Experimentalis et Applicata, 115: 97–105.
  • Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373–399.
  • Apt, K.E., Clendennen, S.K., Powers, D.A. & Grossman, A.R. (1995). The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Molecular and General Genetics, 246: 455–464.
  • Arnold, T.M., Targett, N.M., Tanner, C.E., Hatch, W.I. & Ferrari, K.E. (2001). Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). Journal of Phycology, 37: 1026–1029.
  • Arora, A., Sairam, R. & Srivastava, G. (2002). Oxidative stress and antioxidative system in plants. Current Science, 82: 1227–1238.
  • Baldwin, I. & Callahan, P. (1993). Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants. Oecologia, 94: 534–541.
  • Bärlocher, F. (1999). Biostatistik. Thieme, Stuttgart.
  • Bell, E., Creelman, R.A. & Mullet, J.E. (1995). A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proceedings of the National Academy of Sciences USA, 92: 8675–8679.
  • Bidwell, R.G.S., Percival, E. & Smestad, B. (1972). Photosynthesis and metabolism of marine algae. VIII. Incorporation of 14C into the polysaccharides metabolized by Fucus vesiculosus during pulse labeling experiments. Canadian Journal of Botany, 50: 191–197.
  • Bilgin, D.D., Zavala, J.A., Zhu, J.I.N., Clough, S.J., Ort, D.R. & DeLucia, E.H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant Cell and Environment, 33: 1597–1613.
  • Bolton, M.D. (2009). Primary metabolism and plant defense – fuel for the fire. Molecular Plant-Microbe Interactions, 22: 487–497.
  • Bouarab, K., Potin, P., Correa, J. & Kloareg, B. (1999). Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. The Plant Cell Online, 11: 1635–1650.
  • Brawley, S.H. (1992). Mesoherbivores. In Plant–Animal Interactions in the Marine Benthos (John, D.M., Hawkins, S.J. & Price, J.H., editors), 235–263. Clarendon Press, Oxford.
  • Cock, J.M., Sterck, L., Rouze, P., Scornet, D., Allen, A.E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J.M., Badger, J.H., Beszteri, B., Billiau, K., Bonnet, E., Bothwell, J.H., Bowler, C., Boyen, C., Brownlee, C., Carrano, C.J., Charrier, B., Cho, G.Y., Coelho, S.M., Collen, J., Corre, E., Da Silva, C., Delage, L., Delaroque, N., Dittami, S.M., Doulbeau, S., Elias, M., Farnham, G., Gachon, C.M., Gschloessl, B., Heesch, S., Jabbari, K., Jubin, C., Kawai, H., Kimura, K., Kloareg, B., Kupper, F.C., Lang, D., Le Bail, A., Leblanc, C., Lerouge, P., Lohr, M., Lopez, P.J., Martens, C., Maumus, F., Michel, G., Miranda-Saavedra, D., Morales, J., Moreau, H., Motomura, T., Nagasato, C., Napoli, C.A., Nelson, D.R., Nyvall-Collen, P., Peters, A.F., Pommier, C., Potin, P., Poulain, J., Quesneville, H., Read, B., Rensing, S.A., Ritter, A., Rousvoal, S., Samanta, M., Samson, G., Schroeder, D.C., Segurens, B., Strittmatter, M., Tonon, T., Tregear, J.W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y. & Wincker, P. (2010). The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465: 617–621.
  • Cosse, A., Potin, P. & Leblanc, C. (2009). Patterns of gene expression induced by oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata. New Phytologist, 182: 239–250.
  • Cronin, G. & Hay, M. (1996). Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia, 105: 361–368.
  • de Oliveira, L., Gregoracci, G., Silva, G., Salgado, L., Filho, G., Alves-Ferreira, M., Pereira, R. & Thompson, F. (2012). Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics, 13: 487.
  • Dittami, S.M., Scornet, D., Petit, J.L., Segurens, B., Da Silva, C., Corre, E., Dondrup, M., Glatting, K.H., Konig, R., Sterck, L., Rouze, P., Van de Peer, Y., Cock, J.M., Boyen, C. & Tonon, T. (2009). Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biology, 10: R66.
  • Duffy, J.E. & Hay, M.E. (2000). Strong impacts of grazing amphipods on the organization of a benthic community. Ecological Monographs, 70: 237–263.
  • Dworjanyn, S.A., Wright, J.T., Paul, N.A., De Nys, R. & Steinberg, P.D. (2006). Cost of chemical defence in the red alga Delisea pulchra. Oikos, 113: 13–22.
  • Flöthe, C.R. & Molis, M. (2013). Temporal dynamics of inducible anti-herbivory defenses in the brown seaweed Ascophyllum nodosum (Phaeophyceae). Journal of Phycology, 49: 468–474.
  • Franke, H.D., Gutow, L., & Janke, M. (2007). Flexible habitat selection and interactive habitat segregation in the marine congeners Idotea baltica and Idotea emarginata (Crustacea, Isopoda). Marine Biology, 150: 929–939.
  • Grotewold, E. (2004). The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta, 219: 906–909.
  • Hay, M.E. & Fenical, W. (1988). Marine plant-herbivore interactions: the ecology of chemical defense. Annual Review of Ecology and Systematics, 19: 111–145.
  • Hay, M.E., Kappel, Q.E. & Fenical, W. (1994). Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology, 75: 1714–1726.
  • Heinrich, S., Frickenhaus, S., Glöckner, G. & Valentin, K. (2012a). A comprehensive cDNA library of light- and temperature-stressed Saccharina latissima (Phaeophyceae). European Journal of Phycology, 47: 83–94.
  • Heinrich, S., Valentin, K., Frickenhaus, S., John, U. & Wiencke, C. (2012b). Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PloS One, 7: e44342.
  • Hemmi, A., Honkanen, T. & Jormalainen, V. (2004). Inducible resistance to herbivory in Fucus vesiculosus: duration, spreading and variation with nutrient availability. Marine Ecology Progress Series, 273: 109–120.
  • Hermsmeier, D., Schittko, U. & Baldwin, I.T. (2001). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiology, 125: 683–700.
  • Karban, R., Agrawal, A.A., Thaler, J.S. & Adler, L.S. (1999). Induced plant responses and information content about risk of herbivory. Trends in Ecology and Evolution, 14: 443–447.
  • Kessler, A. & Baldwin, I.T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology, 53: 299–328.
  • Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M. & Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant Journal, 37: 370–378.
  • Küpper, F.C., Kloareg, B., Guern, J. & Potin, P. (2001). Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiology, 125: 278–291.
  • Leitner, M., Boland, W., & Mithöfer, A. (2005). Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytologist, 167: 597–606.
  • Levine, A. (2002). Regulation of stress responses by intracellular vesicle trafficking? Plant Physiology and Biochemistry, 40: 531–535.
  • Long, J.D., Hamilton, R.S. & Mitchell, J.L. (2007). Asymmetric competition via induced resistance: specialist herbivores indirectly suppress generalist preference and populations. Ecology, 88: 1232–1240.
  • Mann, K.H. (1982). Ecology of Coastal Waters: A Systems Approach. University of California Press, Berkeley.
  • Mauricio, R. (1998). Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. American Naturalist, 151: 20–28.
  • Moran, M.D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos, 100: 403–405.
  • Neilson, E.H., Goodger, J.Q.D., Woodrow, I.E. & Møller, B.L. (2013). Plant chemical defense: at what cost? Trends in Plant Science, 18: 250–258.
  • O’Brien, J.A., Daudi, A., Finch, P., Butt, V.S., Whitelegge, J.P., Souda, P., Ausubel, F.M. & Bolwell, G.P. (2012). A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiology, 158: 2013–2027.
  • Orav-Kotta, H. & Kotta, J. (2004). Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia, 514: 79–85.
  • Owen, J.R., Morris, C.A., Nicolaus, B., Harwood, J.L. & Kille, P. (2012). Induction of expression of a 14-3-3 gene in response to copper exposure in the marine alga Fucus vesiculosus. Ecotoxicology, 21: 124–138.
  • Pavey, S.A., Bernatchez, L., Aubin-Horth, N. & Landry, C.R. (2012). What is needed for next-generation ecological and evolutionary genomics? Trends in Ecology and Evolution, 27: 673–678.
  • Pearson, G., Lago-Leston, A., Valente, M. & Serrão, E. (2006). Simple and rapid RNA extraction from freeze-dried tissue of brown algae and seagrasses. European Journal of Phycology, 41: 97–104.
  • Pearson, G.A., Hoarau, G., Lago-Leston, A., Coyer, J.A., Kube, M., Reinhardt, R., Henckel, K., Serrao, E.T., Corre, E. & Olsen, J.L. (2010). An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Marine Biotechnology, 12: 195–213.
  • Peterson, C. & Renaud, P. (1989). Analysis of feeding preference experiments. Oecologia, 80: 82–86.
  • Poore, A.G., Campbell, A.H., Coleman, R.A., Edgar, G.J., Jormalainen, V., Reynolds, P.L., Sotka, E.E., Stachowicz, J.J., Taylor, R.B., Vanderklift, M.A. & Duffy, J.E. (2012). Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 15: 912–922.
  • Quinn, G.G.P. & Keough, M.J. (2002). Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.
  • Reymond, P., Bodenhausen, N., Van Poecke, R.M.P., Krishnamurthy, V., Dicke, M., & Farmer, E.E. (2004). A conserved transcript pattern in response to a specialist and a generalist herbivore. The Plant Cell Online, 16: 3132–3147.
  • Ritschard, R.L. (1992). Marine algae as a CO2 sink. Water Air and Soil Pollution, 64: 289–303.
  • Roa, R. (1992). Design and analysis of multiple-choice feeding-preference experiments. Oecologia, 89: 509–515.
  • Roeder, V., Collén, J., Rousvoal, S., Corre, E., Leblanc, C. & Boyen, C. (2005). Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. Journal of Phycology, 41: 1227–1235.
  • Rohde, S. & Wahl, M. (2008). Temporal dynamics of induced resistance in a marine macroalga: time lag of induction and reduction in Fucus vesiculosus. Journal of Experimental Marine Biology and Ecology, 367: 227–229.
  • Rohde, S., Molis, M. & Wahl, M. (2004). Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. Journal of Ecology, 92: 1011–1018.
  • Smith, W.O., Jr. (1981). Marine macrophytes as a global carbon sink. Science, 211: 838–840.
  • Strauss, S.Y., Rudgers, J.A., Lau, J.A. & Irwin, R.E. (2002). Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution, 17: 278–285.
  • Tollrian, R. & Harvell, C.D. (1999). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.
  • Toth, G.B. & Pavia, H. (2007). Induced herbivore resistance in seaweeds: a meta-analysis. Journal of Ecology, 95: 425–434.
  • Valdivia, N., Golléty, C., Migné, A., Davoult, D. & Molis, M. (2012). Stressed but stable: canopy loss decreased species synchrony and metabolic variability in an intertidal hard-bottom community. PloS One, 7: e36541.
  • Wahl, M., Jormalainen, V., Eriksson, B.K., Coyer, J.A., Molis, M., Schubert, H., Dethier, M., Karez, R., Kruse, I., Lenz, M., Pearson, G., Rohde, S., Wikstrom, S.A. & Olsen, J.L. (2011). Stress ecology in Fucus: abiotic, biotic and genetic interactions. Advances in Marine Biology, 59: 37–105.
  • Weinberger, F. & Friedlander, M. (2000). Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. Journal of Phycology, 36: 1079–1086.
  • Weinberger, F., Lion, U., Delage, L., Kloareg, B., Potin, P., Beltran, J., Flores, V., Faugeron, S., Correa, J. & Pohnert, G. (2011a). Up-regulation of lipoxygenase, phospholipase, and oxylipin-production in the induced chemical defense of the red alga Gracilaria chilensis against epiphytes. Journal of Chemical Ecology, 37: 677–686.
  • Weinberger, F., Rohde, S., Oschmann, Y., Shahnaz, L., Dobretsov, S. & Wahl, M. (2011b). Effects of limitation stress and of disruptive stress on induced antigrazing defense in the bladder wrack Fucus vesiculosus. Marine Ecology Progress Series, 427: 83–94.
  • Whitham, T.G. (1983). Host manipulation of parasites: within-plant variation as a defense against rapidly evolving pests. In Variable Plants and Herbivores in Natural and Managed Systems (Denno, R.F. & McClure, M.S., editors), 15–41. Academic Press, New York.
  • Wiesemeier, T., Jahn, K. & Pohnert, G. (2008). No evidence for the induction of brown algal chemical defense by the phytohormones jasmonic acid and methyl jasmonate. Journal of Chemical Ecology, 34: 1523–1531.
  • Wikström, S.A. & Kautsky, L. (2007). Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuarine Coastal and Shelf Science, 72: 168–176.
  • Winer, B.J., Brown, D.R. & Michels, K.M. (1991). Statistical Principles in Experimental Design, 3rd edition. McGraw-Hill, New York.
  • Wong, T.K.M., Ho, C.L., Lee, W.W., Rahim, R.A. & Phang, S.M. (2007). Analyses of expressed sequence tags from Sargassum binderi (Phaeophyta). Journal of Phycology, 43: 528–534.
  • Yazaki, K. (2006). ABC transporters involved in the transport of plant secondary metabolites. FEBS Letters, 580: 1183–1191.
  • Yun, H.Y., Cruz, J., Treitschke, M., Wahl, M. & Molis, M. (2007). Testing for the induction of anti-herbivory defences in four Portuguese macroalgae by direct and water-borne cues of grazing amphipods. Helgoland Marine Research, 61: 203–209.
  • Yun, H.Y., Rohde, S., Linnane, K., Wahl, M. & Molis, M. (2010). Seaweed-mediated indirect interaction between two species of meso-herbivores. Marine Ecology Progress Series, 408: 47–53.
  • Yun, H.Y., Engelen, A.H., Santos, R.O. & Molis, M. (2012). Water-borne cues of a non-indigenous seaweed mediate grazer-deterrent responses in native seaweeds, but not vice versa. PloS One, 7: e38804.
  • Zangerl, A.R., Arntz, A.M. & Berenbaum, M.R. (1997). Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia, 109: 433–441.
  • Zhou, Y.-H. & Ragan, M. (1995). Cloning and characterization of the nuclear gene and cDNAs for triosephosphate isomerase of the marine red alga Gracilaria verrucosa. Current Genetics, 28: 317–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.