1,359
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

High temperature Chlorellaceae (Chlorophyta) strains from the Syrian-African Rift Valley: the effect of salinity and temperature on growth, morphology and sporulation mode

, &
Pages 387-400 | Received 15 Nov 2014, Accepted 31 Jan 2016, Published online: 05 Aug 2016

REFERENCES

  • Australian National Algae Collection (2013). Algal growth phases including determination of the growth rate and population doubling. www.marine.csiro.au/microalgae/methods/Growth%20rate.htm
  • Becker, E. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25: 207–210.
  • Bhatnagar, A., Bhatnagar, M., Chinnasamy, S. & Das, K.C. (2010). Chlorella minutissima – a promising fuel alga for cultivation in municipal wastewaters. Applied Biochemistry and Biotechnology, 161: 523–536.
  • Borowitzka, M.A. (1992). Algal biotechnology products and processes – matching science and economics. Journal of Applied Phycology, 4: 267–279.
  • Castenholz, R.W. (1969). Thermophilic blue-green algae and the thermal environment. Bacteriology Reviews, 33: 476–504.
  • Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Sciences, 10: 518–532.
  • Cho, S.H., Ji, S.C., Hur, S.B., Bae, J., Park, I.S. & Song, Y.C. (2007). Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fisheries Science, 73: 1050–1056.
  • De-Bashan, L.E., Trejo, A., Huss, V.A., Hernandez, J.P. & Bashan, Y. (2008). Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology, 99: 4980–4989.
  • Edwards, K., Johnstone, C. & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19: 1349.
  • Ettl, H. (1988). Zellteilung und sporulation als wichtige unterscheidungsmerkmale bei grünalgen (Chlorophyta). Archiv für Protistenkunde, 135: 103–118.
  • Fučikova, K. & Lewis, L.A. (2012). Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea, 12: 83–93.
  • Giri, B.J., Bano, N. & Hollibaugh, J.T. (2004). Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Applied Environmental Microbiology, 70: 3443–3448.
  • Gong, M., Chen, B., Li, Z.G. & Guo, L.H. (2001). Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of Plant Physiology, 158: 1125–1130.
  • Griffiths, D.A. & Griffiths, D.J. (1969). The fine structure of autotrophic and heterotrophic cells of Chlorella vulgaris (Emerson strain). Plant Cell Physiology, 10: 11–19.
  • Guiry, M.D. & Guiry, G.M. (2015). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (accessed on30 December 2015).
  • Harrington, H.M. & Alm, D.M. (1988). Interaction of heat and salt shock in cultured tobacco cells. Plant Physiology, 88: 618–625.
  • Higashiyama, T. (1967a). “Gigantism” of Chlorella vulgaris I, relation of gigantism to cell growth and division. Plant Cell Physiology, 8: 567–579.
  • Higashiyama, T. (1967b). “Gigantism” of Chlorella vulgaris II, mechanism of induction of gigantism. Plant Cell Physiology, 8: 581–593.
  • Hoshina, R. & Fujiwara, Y. (2013). Molecular characterization of Chlorella cultures of the National Institute for Environmental Studies culture collection with description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov., and Didymogenes soliella sp. nov. (Chlorellaceae, Trebouxiophyceae). Phycological Research, 61: 124–132.
  • Hu, H., Li, H. & Xu, X. (2008). Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia, 47: 28–34.
  • Jonker, C.Z., Van Ginkel, C. & Olivier, J. (2013). Association between physical and geochemical characteristics of thermal springs and algal diversity in Limpopo Province, South Africa. Africans Journals OnLine, 39: 95–104.
  • Kessler, E. (1985). Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Systematics and Evolution, 151: 67–71.
  • Krienitz, L., Bock, C., Luo, W. & Pröschold, T. (2010). Polyphyletic origin of the Dictyosphaerium morphotype within Chlorellaceae (Trebouxiophyceae). Journal of Phycology, 46: 559–563.
  • Levasseur, M., Thompson, P.A. & Harrison, P.J. (1993). Physiological acclimation of marine phytoplankton to different nitrogen sources. Journal of Phycology, 29: 587–595.
  • Lorenzen, H. (1963). Temperatureinfliisse auf Chlorella pyrenoidosa unter besonderer Beriicksichtigung der Zellentwicklung. Flora, 153: 554–592.
  • Lou, Y. & Yousef, A.E. (1997). Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Applied Environmental Microbiology, 63: 1252–1255.
  • Luo, W., Pflugmacher, S., Pröschold, T., Walz, N. & Krienitz, L. (2006). Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist, 157: 315–333.
  • Luo, W., Pröschold, T., Bock, C. & Krienitz, L. (2010). Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biology, 12: 545–553.
  • Mahboob, S., Rauf, A., Ashraf, M., Sultana T., Sultana, S., Jabeen, F. & Al-Ghanim, K.A. (2012). High-density growth and crude protein productivity of a thermotolerant Chlorella vulgaris: production kinetics and thermodynamics. Aquaculture International, 20: 455–466.
  • Malis-Arad, S. & McGowan, R. (1982). Alkalinity-induced aggregation in Chlorella vulgaris II. Changes in the cell wall during the cell cycle. Plant Cell Physiology, 23: 11–17.
  • Malis-Arad, S., Friedlander, M., Ben Arie, R. & Richmond, A.E. (1980). Alkalinity-induced aggregation in Chlorella vulgaris I. Changes in cell volume and cell wall structure. Plant Cell Physiology, 21: 27–35.
  • Merchant, R.E. & Andre, C.A. (2001). A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Alternative Therapies in Health and Medicine, 7: 79–91.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11: 15–19.
  • Onay, M., Sonmez, C., Oktem, A. & Yucel, A.M. (2014). Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresource Technology, 169: 62–71.
  • Ong, S.C., Kao, C.Y., Chiu, S.Y., Tsai, M.T. & Lin, C.S. (2010). Characterization of the thermal-tolerant mutant of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresource Technology, 101: 2880–2883.
  • Ono, E. & Cuello, J.L. (2002). Selection of optimal microalgae species for CO2 sequestration. The University of Arizona, Department of Agricultural and Biosystems Engineering. http://www.netl.doe.gov/publications/proceedings/03/carbon-seq/PDFs/158.pdf
  • Orús, M.I., Marco, E. & Martínez, F. (1991). Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresource Technology, 38: 179–184.
  • Pluthero, F.G. (1993). Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Research, 21: 4850–4851.
  • Pulz, O. (2001). Photobioreactors: production systems for phototrophic micro-organisms. Applied Microbiology and Biotechnology, 57: 287–293.
  • Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65: 635–648.
  • Roberts, D.M. (1999). Eukaryotic cells under extreme conditions. In Enigmatic Microorganisms and Life in Extreme Environments (Seckbach, J., editor), 163–173. Kluwer Academic Publishers, the Netherlands.
  • Rodriguez-Lopez, M. (1963). Gigantism-inducing factors in Chlorella pyrenoidosa. Nature, 199: 506–7.
  • Rodriguez-Lopez, M. & Candela, R. (1962). A giant form of Chlorella pyrenoidosa. Nature, 196: 691.
  • Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M. & Karube, I. (1995). Chlorella strains from hot springs tolerant to high temperatures and high CO2. Energy Conversion and Management, 36: 693–696.
  • Šetlik, I., Zachleder, V., Doucha, J., Berkova, E. & Bartos, J. (1975). The nature of the temperature block in the sequence of reproduction processes in Chlorella vulgaris Beikerinck. Archiv für Hydrobiologie (Supplementband), 49: 70–104.
  • Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. Prepared for: U.S. Department of Energy’s Office of Fuels Development. http://www.nrel.gov/biomass/pdfs/24190.pdf.
  • Shen, H. & Lee, Y.K. (1997). Thermotolerance induced by heat shock in Chlorella. Journal of Applied Phycology, 9: 471–475.
  • Sluiman, H.J., Kouwets, F.A.C. & Blommers, P.C.J. (1989). Classification and definition of cytokinetic patterns in green algae: sporulation versus (vegetative) cell division. Archiv für Protistenkunde, 137: 277–290.
  • Sorokin, C. (1959). Tabular comparative data for the low- and high temperature strains of Chlorella. Nature ( London), 184: 613.
  • Sorokin, C. & Myers, J. (1953). A high-temperature strain of Chlorella. Science, 117: 330–331.
  • Sorokin, C. & Krauss, R.W. (1965). The dependence of cell division in Chlorella on temperature and light intensity. American Journal of Botany, 52: 331–339.
  • Stockner, J.G. (1967). Observations of thermophilic algal communities in Mount Rainier and Yellowstone National Parks. Limnology and Oceanography, 12: 13–17.
  • Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9: 678–687.
  • Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512–526.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729.
  • Thinh, L.V. & Griffiths, D.J. (1980). The effect of L-arginine on the growth of heterotrophic cultures of the Emerson strain of chlorella. III. Studies with the structural analogue canavanine. New Phytologist, 84: 429–437.
  • Van Den Hoek, C., Mann, D.G. & Jahns, H.M. (1995). Algae: An Introduction to Phycology. Cambridge University Press, Cambridge.
  • Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162: 1174–1186.
  • White, T., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide To Methods And Applications – A Laboratory Manual (Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., eds), 315–322. Academic Press, London.
  • Wijffels, R.H. & Barbosa, M.J. (2010). An outlook on microalgal biofuels. Science ( Washington), 329: 796–799.
  • Yamamoto, M., Nozaki, H., Miyazawa, Y., Koide, T. & Kawano, S. (2003). Relationship between presence of a mother cell wall and speciation in the unicellular microalga nannochloris (chlorophyta) 1. Journal of Phycology, 39: 172–184.
  • Zuppini, A., Gerotto, C. & Balda, B. (2010). Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular Chlorophyte. Plant Cell Physiology, 51: 884–895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.