1,703
Views
19
CrossRef citations to date
0
Altmetric
Articles

A model for the ergosterol biosynthetic pathway in Chlamydomonas reinhardtii

, &
Pages 64-74 | Received 06 Jan 2016, Accepted 10 Jul 2016, Published online: 18 Jan 2017

References

  • Albee, A.J., Kwan, A.L., Lin, H., Granas, D., Stormo, G.D. & Dutcher, S.K. (2013). Identification of cilia genes that affect cell-cycle progression using whole-genome transcriptome analysis in Chlamydomonas reinhardtti. G3: Genes |Genomes |Genetics, 3: 979–991.
  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25: 3389–3402.
  • Bard, M., Wilson, K. & Thompson, R. (1978). Isolation of sterol mutants in Chlamydomonas reinhardi: chromatographic analyses. Lipids, 13: 533–539.
  • Benveniste, P. (1986). Sterol biosynthesis. Annual Review of Plant Physiology, 37: 275–308.
  • Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annual Review of Plant Biology, 55: 429–457.
  • Blaby, I.K., Blaby-Haas, C.E., Tourasse, N., Hom, E.F.Y., Lopez, D., Aksoy, M., Grossman, A., Umen, J., Dutcher, S., Porter, M., King, S., Witman, G.B., Stanke, M., Harris, E.H., Goodstein, D., Grimwood, J., Schmutz, J., Vallon, O., Merchant, S.S. & Prochnik, S. (2014). The Chlamydomonas genome project: a decade on. Trends in Plant Science, 19: 672–680.
  • Brumfield, K.M., Moroney, J.V., Moore, T.S., Simms, T.A. & Donze, D. (2010). Functional characterization of the Chlamydomonas reinhardtii ERG3 ortholog, a gene involved in the biosynthesis of ergosterol. PLoS ONE, 5: e8659.
  • Corey, E., Matsuda, S. & Bartel, B. (1993). Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proceedings of the National Academy of Sciences USA, 90: 11628–11632.
  • Dahl, C., Biemann, H.P. & Dahl, J. (1987). A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. Proceedings of the National Academy of Sciences USA, 84: 4012–4016.
  • Dahl, J. S. & Dahl, C. E. (1985). Stimulation of cell proliferation and polyphosphoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol. Biochemical and Biophysical Research Communications, 133: 844–850.
  • Desmond, E. & Gribaldo, S. (2009). Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biology and Evolution, 1: 364–381.
  • Gealt, M., Adler, J. & Nes, W. (1981). The sterols and fatty acids from purified flagella of Chlamydomonas reinhardi. Lipids, 16: 133–136.
  • Harris, E. H. (1989). The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego, CA. 780 pp.
  • Hart, E., Hua, L., Daer, L., Wilson, W. & Pang, J. (1999). Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. Journal of the American Chemical Society, 121: 9887–9888.
  • Haubrich, B.A., Collins, E.K., Howard, A.L., Wang, Q., Snell, W.J., Miller, M.B., Thomas, C.D., Pleasant, S.K. & Nes, W.D. (2015). Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: implications for understanding sterol evolution in the green lineage. Phytochemistry, 113: 64–72.
  • Heintz, R. & Benveniste, P. (1974). Plant sterol metabolism. Enzymatic cleavage of the 9beta, 19beta-cyclopropane ring of cyclopropyl sterols in bramble tissue cultures. Journal of Biological Chemistry, 249: 4267–4274.
  • Herrera, J., Bartel, B., Wilson, W. & Matsuda, S. (1998). Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene. Phytochemistry, 49: 1905–1911.
  • Hirokawa, T., Boon-Chieng, S. & Mitaku, S. (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics, 14: 378–379.
  • Hofmann, K. & Stoffel, W. (1993). TMbase – a database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler, 374: 166.
  • Im, C.S. & Grossman, A. (2001). Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. The Plant Journal, 30: 301–313.
  • Janero, D.R. & Barrnett, R. (1982). Sterol synthesis in Chlamydomonas reinhardtii 137+ cell cycle variations. Biochimica et Biophysica Acta, 710: 242–247.
  • Kawasaki, S., Ramgopal, M., Chin, J. & Bloch, K. (1985). Sterol control of the phosphatidylethanolamine-phosphatidylcholine conversion in the yeast mutant GL7. Proceedings of the National Academy of Sciences USA 82: 5715–5719.
  • Leblond, J. D., Dodson, J., Khadka, M., Holder, S. & Seipelt, R. L. (2012). Sterol composition and biosynthetic genes of the recently discovered photosynthetic alveolate, Chromera velia (chromerida), a close relative of apicomplexans. Journal of Eukaryotic Microbiology, 59: 191–197.
  • Lodiero, S., Schulz-Gasch, T. & Madsuda, P.T. (2005). Enzyme redesign: two mutations cooperate to convert cycloartenol synthase to an accurate lanosterol synthase. Journal of the American Chemical Society, 127: 14132–14133.
  • Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Marechal-Drouard, L., Marshall, W.F., Qu, L.H., Nelson, D.R., Sanderfoot, A.A., Spalding, M.H., Kapitonov, V.V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S.M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C.L., Cognat, V., Croft, M.T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P.A., Lemaire, S.D., Lobanov, A.V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J.V., Moseley, J., Napoli, C., Nedelcu, A.M., Niyogi, K., Novoselov, S.V., Paulsen, I.T., Pazour, G., Purton, S., Ral, J.P., Riano-Pachon, D.M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S.L., Allmer, J., Balk, J., Bisova, K., Chen, C.J., Elias, M., Gendler, K., Hauser, C., Lamb, M.R., Ledford, H., Long, J.C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A.M., Yang, P., Ball, S., Bowler, C., Dieckmann, C.L., Gladyshev, V.N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R.T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y.W., Jhaveri, J., Luo, Y., Martinez, D., Ngau, W. C., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D.S. & Grossman, A.R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318: 245–250.
  • Miller, M.B., Haubrich, B.A., Wang, Q., Snell, W.J. & Nes, W.D. (2012). Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. Journal of Lipid Research, 53: 1636–1645.
  • Mo, C., Valachovic, M. & Bard, M. (2004). The ERG28-encoded protein, Erg28p, interacts with both the sterol C-4 demethylation enzyme complex as well as the late biosynthetic protein, the C-24 sterol methyltransferase (Erg6p). Biochimica et Biophysica Acta, 1686: 30–36.
  • Nes, W.D., Norton, R.A., Crumley, F.G., Madigan, S.J. & Katz, E.R. (1990). Sterol phylogenesis and algal evolution. Proceedings of the National Academy of Sciences USA, 87: 7565–7569.
  • Ohyama, K., Suzuki, M., Kikuchi, J., Saito, K. & Muranaka, T. (2009). Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proceedings of the National Academy of Sciences USA, 106: 725–730.
  • Rahier, A. & Karst, F. (2014). Plant cyclopropylsterol-cycloisomerase: key amino acids affecting activity and substrate specificity. Biochemical Journal, 459: 289–299.
  • Rahier, A., Taton, M. & Benveniste, P. (1989). Cycloeucalenol-obtusifoliol isomerase. Structural requirements for transformation or binding of substrates and inhibitors. European Journal of Biochemistry, 181: 615–626.
  • Salimova, E., Boschetti, A., Eichenberger, W. & Lutova, L. (1999). Sterol mutants of Chlamydomonas reinhardtii: characterisation of three strains deficient in C24(28) reductase. Plant Physiology and Biochemistry, 37: 241–249.
  • Segura, M., Lodeiro, S., Meyer, M., Patel, A. & Matsuda, S. (2002). Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis. Organic Letters, 4: 4459–4462.
  • Silflow, C.D., Kathir, P. & Lefebvre, P.A. (1995). Molecular mapping of genes for flagellar proteins in Chlamydomonas. Methods in Cell Biology, 47: 525–530.
  • Solomon, E.P., Berg, L.R. & Martin, D.W. (2008). Biology. 8th ed. Thomson-Brooks/Cole, Belmont, CA. 1376 pp.
  • Souter, M., Topping, J., Pullen, M., Friml, J., Palme, K., Hackett, R., Grierson, D. & Lindsey, K. (2002). Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell, 14: 1017–1031.
  • Storey, M.K., Byers, D.M., Cook, H.W. & Ridgway, N.D. (1998). Cholesterol regulates oxysterol binding protein (OSBP) phosphorylation and Golgi localization in Chinese hamster ovary cells: correlation with stimulation of sphingomyelin synthesis by 25-hydroxycholesterol. The Biochemical Journal, 336: 247–256.
  • Subbiah, M.T. & Abplanalp, W. (2003). Ergosterol (major sterol of baker’s and brewer’s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products. International Journal of Vitamin and Nutrition Research, 73: 19–23.
  • Sueoka, N. (1960). Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences USA, 46: 83–91.
  • Summons, R.E., Bradley, A.S., Jahnke, L.L. & Waldbauer, J.R. (2006). Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B Biological Sciences, 361: 951–968.
  • Szolderits, G., Hermetter, A., Paltauf, F. & Daum, G. (1989). Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 986: 301–309.
  • Thoma, R., Schulz-Gasch, T., D’Arcy, B., Benz, J., Aebi, J., Dehmlow, H., Hennig, M., Stihle, M. & Ruf, A. (2004). Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature, 432: 118–122.
  • Witman, G.B., Carlson, K., Berliner, J. & Rosenbaum, J.L. (1972). Chlamydomonas flagella 1. Isolation and electrophoretic analysis of microtubules, matrix, membranes and amstigonemes. Journal of Cell Biology 54: 507–539.
  • Wriessnegger, T. & Pichler, H. (2013). Yeast metabolic engineering – targeting sterol metabolism and terpenoid formation. Progress in Lipid Research, 52: 277–293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.