11,027
Views
69
CrossRef citations to date
0
Altmetric
Review

The future of seaweed aquaculture in a rapidly changing world

ORCID Icon, & ORCID Icon
Pages 495-505 | Received 11 Apr 2017, Accepted 18 Jul 2017, Published online: 10 Oct 2017

References

  • Altamirano, M., Flores-Moya, A. & Figueroa, F.L. (2003). Effects of UV radiation and temperature on growth of germlings of three species of Fucus (Phaeophyceae). Aquatic Botany, 75: 9−20.
  • Arnold, T., Mealey, C., Leahey, H., Miller, A.W., Hall-Spencer, J.M., Milazzo, M. & Maers, M. (2012). Ocean acidification and the loss of phenolic substances in marine plants. PLoS ONE, 7(4): e35107.
  • Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. & Silliman, B.R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81: 169–193.
  • Barry, J.P., Baxter, C.H., Sagarin, R.D. & Gilman, S.E. (1995). Climate-related, long term faunal changes in a California rocky intertidal community. Science, 267: 672–675.
  • Beardall, J. & Raven, J.A. (2004). The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43: 26–40.
  • Beardall, J., Beer, S. & Raven, J.A. (1998). Biodiversity of marine plants in an era of climate change: some predictions on the basis of physiological performance. Botanica Marina, 41: 113–123.
  • Beardall, J., Stojkovic, S., & Larsen, S. (2009). Living in a high CO2 world: impacts of globalclimate change on marine phytoplankton. Plant Ecology and Diversity, 2: 191–205.
  • Beardall, J., Stojkovic, S. & Gao, K. (2014). Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: implications for the impacts of global change. Aquatic Biology, 22: 5–23.
  • Bermúdez, J.R., Riebesell, U., Larsen, A. & Winder, M. (2016). Ocean acidification reduces transfer of essential biomolecules in a natural plankton community. Science Reports, 6: 27749. doi: 10.1038/srep27749.
  • Boyd, P.W., Lennartz, S.T., Glover, D.M. & Doney, S. (2015). Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change, 5: 71–79.
  • Breeman, A.M. (1988). Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgolander Meeresuntersuchungen, 42: 199–241.
  • Breeman, A.M. (1990). Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. In Expected Effects of Climate Change on Marine Coastal Ecosystems (Beukema, J.J., Wolff, W.J. & Brouns, J.J.W.M., editors), 69–76. Kluwer Academic, Dordrecht.
  • Brodie, J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C., Anderson, K.M., Asnaghi, V., Brownlee, C., Burdett, H.L., Burrows, M.T., Collins, S., Donohue, P.J.C., Harvey, B., Foggo, A., Noisette, F., Nunes, J., Ragazzola, F., Raven, J.A., Schmidt, D.N., Suggett, D., Teichberg, M. & Hall-Spencer, J.M. (2014). The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4: 2787–2798.
  • Buck, B.H. & Buchholz, C.M. (2004). The offshore ring: a new system design for the open ocean aquaculture for macroalgae. Journal of Applied Phycology, 16: 355–368.
  • Buck, B., Krause, G., Michler-Cieluch, T., Brenner, M., Buchholz, C., Busch, J., Fisch, R., Geisen, M., & Zielinski, O. (2008). Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgoland Marine Research, 62: 269–281.
  • Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, Á, Hernández-González, M.C., Pereda, S.V., Gomez-Pinchetti, J.L., Golberg, A, Tadmor-Shalev, N. & Critchley, A.T. (in press). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology.
  • Busetti, A., Maggs, C.A., & Gilmore, B. (in press). Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity. European Journal of Phycology.
  • Cabral, P., Levrel, H., Viard, F., Frangoudes, K., Girard, S. & Scemama, P. (2016). Ecosystem services assessment and compensation costs for installing seaweed farms. Marine Policy, 71: 157–165.
  • Celis-Plá, P.S.M., Hall-Spencer, J.M., Horta, P.A., Milazzo, M., Korbee, N., Cornwall, C.E. & Figueroa, F.L. (2015). Macroalgal responses to ocean acidification depend on nutrient and light levels. Frontiers of Marine Science, 2: 26. doi: 10.3389/fmars.2015.00026.
  • Chapin, F.S.I, Zavaleta., E.S., Eviner., V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C. & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405: 234–242.
  • Chopin, T., Yarish, C., Wilkes, R. Belyea E., Lu, S. & Mathieson, A. (1999). Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. Journal of Applied Phycology, 11:463–472.
  • Chung, I.K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. (2011). Using marine macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology, 23: 877–886.
  • Chung, I.K., Oak, J.H., Lee, J.A., Shin, J.A., Kim, J.G. & Park, K.S. (2013). Installing kelp forest/seaweed beds for mitigation and adaptation against global warming: Korean Project overview. ICES Journal of Marine Science, doi:10.1093/icesjms/fss206.
  • Clark, J.R. (1992). Integrated Management of Coastal Zones. FAO Fisheries Technical Paper. No. 327. FAO, Rome. 167 pp.
  • Connell, S.D. & Russell, B.D. (2010). The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society B: Biological Sciences, 277: 1409–1415.
  • Cornwall, C.E., Hepburn, C.D., Pritchard D., Currie, K.I., McGraw, C.M., Hunter, K.A. & Hurd, C.L. (2012). Carbon use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48: 137–144.
  • Dearing, J.A. (2006). Climate-human-environment interactions: resolving our past. Climate of the Past Discussions. European Geosciences Union (EGU), 2: 563–604.
  • Denman, K.L., Brasseur, G.P., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R.E., Hauglustaine, D.A., Heinze, C., Holland, E.A., Jacob, D.J., Lohmann, U., Ramachandran, S., Leite da silva Dias, P., Wofsy, S.C., Zhang, X.Y. & Steffen, W. (2007). Coupling between changes in the climate system and biogeochemistry. ANU Research Publications, http://hdl.handle.net/1885/57818.
  • Doney, S.C. (2006). Plankton in a warmer world. Nature, 444: 695–696.
  • Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman, W.J. & Talley, L.D. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4: 11–37.
  • Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3: 961-968.
  • Duarte, C.M., Wu, J., Xiao, X., Bhrun, A. & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4: 1–8.
  • Duggins, D.O., Simenstad, C.A. & Estes, J.A. (1989). Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science, New Series, 245: 170–173.
  • Eng, C.T., Paw, J.N., & Guarin, F.Y. (1987). The environmental impact of aquaculture and the effects of the pollution on coastal aquaculture development in Southeast Asia. Marine Pollution Bulletin, 20: 335–343.
  • FAO (2003). A Guide to the Seaweed Industry. Fisheries Technical Paper 441. Food and Agriculture Organisation of the United Nations, Rome. 118 pp.
  • FAO (2010). The State of World Fisheries and Aquaculture. Food and Agriculture Organisation of the United Nations, Rome. 197 pp.
  • FAO (2014). The State of World Fisheries and Aquaculture 2016. Food and Agriculture Organisation of the United Nations, Rome. 223 pp.
  • FAO (2016). The State of Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Food and Agriculture Organisation of the United Nations, Rome. 200 pp.
  • Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J.A., Fabry, V.J. & Millero, F.J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305: 362–366.
  • Fei, X.G. (2004). Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia, 512: 145–151. doi:10.1007/978-007-0944-7_19.
  • Fernández, C. (2011). The retreat of large brown seaweeds on the north coast of Spain: the case of Sacchoriza polyschides. European Journal of Phycology, 46: 352–360.
  • Gao, K., Helbling, E.W., Häder, D.P. & Hutchins, D.A. (2012). Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Marine Ecology Progress Series, 470: 167−189.
  • Gao, Y., Yu, G., Yang, T., Jia, Y., He, N. & Zhuang, J. (2016). New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China. Earth-Science Reviews, 159: 36–46.
  • Giordano, M., Beardall, J. & Raven, J.A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annual Review of Plant Biology, 56: 99–131.
  • Go, F. (2010). Rural space as a regional resource for education: a case study of education farm, activities at elementary schools in Saga city. Geographical Review of Japan Series B, 82: 137–148.
  • Graham, M.H. (2004). Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystem, 7: 341–357.
  • Guinotte, J.M., Buddemeier, R.W. & Kleypas, J.A. (2003). Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs, 22: 551–558.
  • Harley, C.D.G., Anderson, K.M., Demes, K.W., Jorve, J.P., Kordas, R., Coyle, T.A. & Graham, M.H. (2012). Effects of climate change on global seaweed communities. Journal of Phycology, 48: 1064–1078.
  • Hegglin, M.I. & Shepherd, T.G. (2009). Large climate-induced changes in ultraviolet index and stratospheric-to-troposphere ozone flux. Nature Geoscience, 2: 687−691.
  • Herman, J.R. (2010). Global increase in UV irradiance during the last 30 years (1979–2008) estimated from satellite data. Journal of Geophysical Research, 115: D04203, doi: 10.102912009/JDOI2219.
  • Hill, R., Bellgrove, A., Macreadie, P.I., Petrou, K., Beardall, J., Steven, A. & Ralph, P.J. (2015). Can macroalgae contribute to Blue Carbon? An Australian perspective. Limnology and Oceanography, 60: 1689–1706.
  • Holbrook, G.P., Beer, S., Spencer, W.E., Reiskind, J.B., Davis, J.S. & Bowes, G. (1988). Photosynthesis in marine macroalgae: evidence for carbon limitation. Canadian Journal of Botany, 66: 577–582.
  • Howard, J., Hoyt, J., Isensee, K., Pidgeon, E. & Telszewski, M. (2014). Coastal Blue Carbon: Methods for Conservation. International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature Factors in Mangroves, Tidal Salt Marshes, and Seagrasses Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia.
  • IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M., editors). Cambridge University Press, Cambridge, 1535 pp., doi: 10.1017/CBO9781107415324.
  • Israel, A. & Hophy, M. (2002). Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biology, 8: 831–840.
  • Israel, A., Einav, R. & Seckbach, J. (eds) (2010). Seaweeds and their Role in Globally Changing Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, Volume 15. Springer, Dordrecht, 479 pp., doi 10.1007/978-90-481-8569-6.
  • Jackson, G.A. & Winant, C.W. (1983). Effect of a kelp forest on coastal currents. Continental Shelf Research, 2: 75–80.
  • Ji, Y., Xu, Z., Zou, D., & Gao, K. (2016). Ecophysiological responses of marine macroalgae to climate change factors. Journal of Applied Phycology, 28: 2953–2967.
  • Jin, P., Wang, T., Liu N., Dupont, S., Beardall, J., Boyd, P W., Riebesell, U. & Gao, K. (2015). Ocean acidification increases accumulation of toxic phenolic compound across trophic levels. Nature Communications, 6: 8714. doi: 10.1038/ncomms9714.
  • Johnson, V.R., Brownlee, C., Rickaby, R.E.M., Graziano, M., Milazzo, M. & Hall-Spencer, J.M. (2013). Responses of marine benthic microalgae to elevated CO2. Marine Biology, 160: 1813–1824.
  • Johnston, A.M., Maberly, S.C. & Raven, J.A. (1992). The acquisition of inorganic carbon by four red macroalgae. Oecologia, 92: 317–326.
  • Jueterbock, A., Tyberghein, L., Verbruggen, H., Coyer, J.A., Olsen, J.L. & Hoarau, G. (2013). Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution, 3: 1356–1373.
  • Krause-Jensen, D. & Duarte, C.M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9: 737–742.
  • Kübler, J.E., Johnston, A.M. & Raven, J.A. (1999). The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell and Environment, 22: 1303–1310.
  • Kuffner, I.B., Andersson, A.J., Jokiel, P.L., Rodgers, K.S. & Mackenzie, F.T. (2008). Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience, 1: 114–117.
  • Le Quere, C. (2010). Trends in the land and ocean carbon uptake. Environment Sustainability, 2: 219–224.
  • Levinton, J.S., Ward, J.E. & Shumway, S.E. (2002). Feeding responses of the bivalves Crassostrea gigas and Mytilus trossulus to chemical composition of fresh and aged kelp detritus. Marine Biology, 141: 367–376.
  • Mac Monagail, M., Cornish, L., Morrison, L, Araújo, R., & Critchley, A.T. (in press). Sustainable harvesting of wild seaweed resources. European Journal of Phycology.
  • MacArtain, P., Gil, C.I.R., Brooks, M., Campbell, R. & Rowland, I.R. (2007). Nutritional value of edible seaweeds. Nutrition Review, 65: 535–543.
  • Maier-Reimer, E., & Hasselmann, K. (1987). Transport and storage of CO2 in the ocean – an inorganic ocean-circulation carbon cycle model. Climate Dynamics, 2: 63–90.
  • MEA (2005). Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Current State and Trends, Findings of the Condition and Trends Working Group. Millennium Ecosystem Assessment Series, Island Press, Washington, DC. 47 pp.
  • Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., et al. (2007). Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H. L., editors), 749–845. Cambridge University Press, Cambridge.
  • Meier, H.E.M. (2006). Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Climate Dynamics, 27: 39–68.
  • Mitra, A., Zaman, S., Pramanick, P., Bhattacharyya, S.B. & Raha, A.K. (2014). Stored carbon in dominant seaweeds of Indian Sundarbans. Pertanika Journal of Tropical Agricultural Science, 37: 263–274.
  • Monastersky, R. (2015). Anthropocene: the human age. Nature, 519: 144–147.
  • Mumby, P., Edwards, A., Aria-Gonzalez, J.E., Lindeman, K.C., Blackwell, P.G., Gail, A., Gorczynska, M.I., Harborne, A., Pescod, C.L., Renken, H., Wabnitz, C.C.C. & Llewellyn, G. (2004). Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature, 427: 533–536.
  • Muraoka, D. (2004). Seaweed resources as a source of carbon fixation. Bulletin of Fisheries Research Agency, Supplement No. 1: 59–63
  • Nellemann, C., Corcoran, E., Duarte, C.M., Valdes, L., De Young, C., Fonseca, L. & Grimsditch, G. (2009). Blue Carbon. A Rapid Response Assessment. GRID-Arendal: United Nations Environment Programme.
  • Neumann, B., Vafeidis, A.T., Zimmermann, J. & Nicholls, R.J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment. PLoS ONE, 10: e0118571. https://doi.org/10.1371/journal.pone.0118571.
  • Norderhaug, K.M., Christie, H. & Rinde, E. (2002). Colonization of kelp imitations by epiphyte and a holdfast fauna; a study of mobility patterns. Marine Biology, 141: 965–973.
  • N’Yeurt, A., Chynoweth, D., Capron, M.E., Stewart, J. & Hasan, M. (2012). Negative carbon via ocean afforestation. Process Safety and Environmental Protection, 90: 467–474.
  • O’Connor, K.C. & Anderson, T.W. (2010). Consequences of habitat disturbance and recovery to recruitment and the abundance of kelp forest fishes. Journal of Experimental Marine Biology and Ecology, 386: 1–10.
  • Pearson, R.G., & Dawson, T.P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12: 361–371.
  • Pickering, T.D., Ponia, B., Hair, C.A., Southgate, P.C., Poloczanska, E.S., Della Patrona, L., Teitelbaum, A., Mohan, C.V., Phillips, M.J., Bell, J.D. & De Silva, S. (2011). Vulnerability of aquaculture in the tropical Pacific to climate change. In Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (Bell, J.D., Johnson, J.E. & Hobday, A.J., editors), 647–731. Secretariat of the Pacific Community, Noumea, New Caledonia.
  • Radulovich, R., Umanzor S., Cabrera, R. & Mata, R. (2015). Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture, 436: 40–46.
  • Raikar, S.V., Iima, M. & Fujita, Y. (2001). Effect of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian Journal of Marine Sciences, 30: 98–104.
  • Raven, J.A., Beardall, J. & Sánchez-Baracaldo, P. (2017). The possible evolution and future of CO2 concentrating mechanisms. Journal of Experimental Botany, 68: doi: 10.1093/jxb/erx110.
  • Raven, J.A., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P.S., Riebesell, U., Shepherd, J., Turley, C. & Watson, A. (2005). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide. Royal Society Policy Document 12/05. The Royal Society, London.
  • Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6: 597–607.
  • Reusch, T.B.H. (2014). Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evolutionary Applications, 7: 104–122.
  • Richa, Sinha, R.P. & Häder, D.-P. (2016). Effects of global change, including UV and UV screening compounds. In The Physiology of Microalgae (Borowitzka, M., Beardall, J. & Raven, J.A., editors), 373–409. Springer, Dordrecht.
  • Riebesell, U., Revill, A., Holdsworth, D. & Volkman, J. (2000). The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 64: 4179–4192.
  • Roesijadi, G., Jones, S.B., Snowden-Swan, L.J. & Zhu, Y. (2010). Macroalgae as a Biomass Feedstock: A Preliminary Analysis. US Department of Energy PNNL-19944.
  • Rossoll, D., Bermúdez, R., Hauss, H., Schulz, K.G., Riebesell, U., Sommer, U. & Winder, M. (2012). Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE, 7: e34737. doi: 10.1371/journal.pone.0034737.
  • Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W., Tilbrook, B., Millero, F.J., Peng, T.H., Kozyr, A., Ono, T. & Rios, A.F. (2004). The oceanic sink for anthropogenic CO2. Science, 305: 367–371.
  • Saintilan, N., Hossain, K. & Mazumder, D. (2007). Linkages between seagrass, mangrove and saltmarsh as fish habitat in the Botany Bay estuary, New South Wales. Wetlands Ecology and Management, 15: 277–286.
  • Salimen, J-P. & Karonen, M. (2011). Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology, 25: 325–338.
  • Sarker, M.Y., Bartsch, I., Olischläger, M., Gutow, L. & Wiencke, C. (2013). Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Botanica Marina, 56: 63–74.
  • Sarojini, Y., Sujatha, B. & Santha, P.R. (2016). The variation in distribution of total phenols and antioxidant activity in five species of marine macro algae. Der Pharmacia Lettre, 8: 30–37.
  • Smale, D.A., Burrows, M.T., Moore, P., O’Connor, N. & Hawkins, S.J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and Evolution, 3: 4016–4038.
  • Small, C. & Nicholls, R.J. (2013). A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19: 584–599.
  • Sohn, C.H. (1993). Porphyra, Undaria and Hizikia cultivation in Korea. Korean Journal of Phycology, 8: 207–216.
  • Somero, G.N. (2010). The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 213: 912–920.
  • Sondak, C.F.A., Ang, P.O., Beardall, J., Bellgrove, A., Boo, S.M., Gerung, G.S., Hepburn, C.D., Hong, D.D., Hu, Z., Kawai, K., Largo, D., Lee, J.A., Lim, P.E., Mayakun, J., Nelson, W.A., Oak, J.H., Phang, S.M., Sahoo, D., Peerapornpis, Y., Yang, Y. & Chung, I.K. (2016). Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). Journal of Applied Phycology, doi: 10.1007/s10811-016-1022-1.
  • Southward, A.J., Hawkins, S.J., & Burrows, M.T. (1995). Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the Western English Channel in relation to rising sea temperature. Journal of Thermal Biology, 20: 127-155.
  • Steinberg, P. (1988). Effects of quantitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. Journal of Experimental Marine Biology and Ecology, 120: 221–237.
  • Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A. & Tegner, M.J. (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, 29: 436–459.
  • Stévant, P., Rebours, C. & Chapman, A. (2017). Seaweed aquaculture in Norway: recent industrial developments and future perspectives. Aquaculture International, 25: 1373–1390.
  • Suárez-Álvarez, S., Gómez-Pinchetti, J.L. & García-Reina, G. (2012). Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). Journal of Applied Phycology, 24: 815–823.
  • Tang, Q., Zhang, J. & Fang, J. (2011). Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystem. Marine Ecology Progress Series, 424: 97–104.
  • Terada, R., Vo, T.D., Nishihara, G.N., Shioya, K., Shimada, S. & Kawaguchi, S. (2016). The effect of irradiance and temperature on the photosynthesis and growth of a cultivated red alga Kappaphycus alvarezii (Solieriaceae) from Vietnam, based on in situ and in vitro measurements. Journal of Applied Phycology, 28: 457.
  • Trevathan-Tackett, S.M., Kelleway, J., Macreadie, P.I., Beardall, J., Ralph, P. & Bellgrove, A. (2015). The capacity of marine macrophytes to contribute to blue carbon sequestration. Ecology, 96: 3043–3057.
  • UNFCC (2016). CDM Methodology Booklet Eighth Edition November 2016. United Nations Framework on Climate Change. https://cdm.unfccc.int/methodologies/.
  • Van Alstyne, K.L. (1988). Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology, 69: 655–663.
  • Vierros, M. (2013). Communities and blue carbon: the role of traditional management systems in providing benefits for carbon storage, biodiversity conservation and livelihoods. Climate Change, doi: 10.1007/s10584-013-920-3.
  • Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck Jr., K.L., Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Short, F.T. & Williams, S.L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106: 12377–12381.
  • Wernberg, T., Smale, D.A., Tuya, F., Thomsen, M.S., Langlois, T.J., de Bettignies, T., Bennett, S., & Rousseaux, C.S. (2013). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3: 78–82.
  • Wylie, L., Sutton-Grier, A.E. & Moore, A. (2016). Keys to successful blue carbon projects: lessons learned from global case studies. Marine Policy, 65: 76–84.
  • Yamamoto, M., Watanabe, Y. & Kinshita, H. (1991). Effects of water temperature on the growth of red alga Porphyra yesoensis form narawaensis (Nori) cultivated in an outdoor raceway tank. Nippon Suisan Gakkaishi Bulletin, 57: 2211–2217.
  • Yesson, C., Bush, L.E., Davies, A.J., Maggs, C.A. & Brodie, J. (2015). Large brown seaweeds of the British Isles: evidence of changes in abundance over four decades. Estuarine, Coastal and Shelf Science, 155: 167–175.
  • Young, C.S. & Gobler, C.J. (2016). Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS ONE, 11: e0155152. doi: 10.1371/journal.pone.0155152.
  • Zou, D. & Gao, K. (2009). Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia, 48: 510–517.
  • Zou, D.H., Gao, K.S. & Ruan, Z.X. (2007). Daily timing of emersion and elevated atmospheric CO2 concentration affect photosynthetic performance of the intertidal macroalga Ulva lactuca (Chlorophyta) in sunlight. Botanica Marina, 50: 275–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.