53,764
Views
391
CrossRef citations to date
0
Altmetric
Review

Seaweed production: overview of the global state of exploitation, farming and emerging research activity

, , , , , , , , , & show all
Pages 391-406 | Received 11 Jun 2017, Accepted 11 Jul 2017, Published online: 10 Oct 2017

References

  • Ainis, A., Vellanoweth, R., Lapeña, Q. & Thornber, C.S. (2014). Using non-dietary gastropods in coastal shell middens to infer kelp and seagrass harvesting and paleoenvironmental conditions. Journal of Archaeological Science, 49: 343–360.
  • Almanza, V. & Buschmann, A.H. (2013). The ecological importance of Macrocystis pyrifera (Phaeophyta) forests towards a sustainable management and exploitation of Chilean coastal benthic co-management areas. International Journal of Environment and Sustainable Development, 12: 342–360.
  • Anis, M., Ahmed, S. & Hasan, M. (2017). Algae as nutrition, medicine and cosmetic: the forgotten history, present status and future trend. World Journal of Pharmacy and Pharmaceutical Sciences, 6: 1934–1959.
  • ARPA-e. (2016). Macroalgae research inspiring novel energy resources (MARINER). U.S. Department of Energy. Available at https://arpa-e-foa.energy-gov.
  • Baghel, R.R.S., Trivedi, N., Gupta, V., Neori, A., Reddy, C.R.K., Lali, A. & Jha, B. (2015). Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry, 17: 2436–2443.
  • Balboa, E.M., Conde, E., Soto, M.L., Pérez-Armada, L. & Domínguez, H. (2015). Cosmetics from marine sources. In Handbook of Marine Biotechnology (Kim, S.K., editor), 1015–1042. Springer, Berlin.
  • Barquera, S., Pedroza-Tobías, A., Medina, C., Hernández-Barrera, L., Bibbins-Domingo, K., Lozano, R. & Moran, A.E. (2015). Global overview of the epidemiology of atherosclerotic cardiovascular disease. Archives of Medical Research, 46: 328–338.
  • Barrento, S., Camus, C., Sousa-Pinto, I. & Buschmann, A.H. (2016). Germplasm banking of the giant kelp: our biological insurance in a changing environment. Algal Research, 13: 134–140.
  • Bell, T.W., Cavanaugh, K.C., Reed, D.C. & Siegel, D.A. (2015). Geographical variability in the controls of giant kelp biomass dynamics. Journal of Biogeography, 42: 2010–2021.
  • Benitez-Nelson, C.R. (2000). The biogeochemical cycling of phosphorus in marine systems. Earth-Science Reviews, 51: 109–135.
  • Bennett, E.E.M., Cramer, W., Begossi, A., Cundill, G., Díaz, S., Egoh, B.N., Geijzendorffer, I.R., Krug, C.B., Lavorel, S., Lazos, E., Lebel, L., Martín-López, B., Meyfroidt, P., Mooney, H.A., Nel, J.L., Pascual, U., Payet, K., Harguindeguy, N.P., Peterson, G.D., Prieur-Richard, A.-H., Reyers, B., Roebeling, P., Seppelt, R., Solan, M., Tschakert, P., Tscharntke, T., Turner, B., Verburg, P.H., Viglizzo, E.F., White, P.C. & Woodward, G. (2015a). Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 14: 76–85.
  • Bennett, S., Wernberg, T., Connell, S.S.D., Hobday, A.J.A., Johnson, C.R. & Poloczanska, E.S. (2015b). The “Great Southern Reef”: social, ecological and economic value of Australia’s neglected kelp forests. Marine and Freshwater Research, 67: 47–56.
  • Bidwell, R., McLachlan, J. & Lloyd, N. (1985). Tank cultivation of Irish moss, Chondrus crispus Stackh. Botanica Marina, 28: 87–97.
  • Bixler, H.H.J. & Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23: 321–335.
  • Bjerregaard, R., Valderrama, D., Radulovich, R., Diana, J., Capron, M., Mckinnie, C.A., Cedric, M., Hopkins, K., Yarish, C., Goudey, C. & Forster, J. (2016). Seaweed aquaculture for food security, income generation and environmental health in Tropical Developing Countries. World Bank Group, Washington, DC.
  • Bolton, J.J., Robertson-Andersson, D. V., Shuuluka, D. & Kandjengo, L. (2009). Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. Journal of Applied Phycology, 21: 575–583.
  • Bruhn, A., Dahl, J., Nielsen, H.H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C. & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresource Technology Journal, 102: 2595–2604.
  • Buschmann, A.H., Mora, O., Gómez, P., Böttger, M., Buitano, S., Retamales, C., Vergara, P. & Gutierrez, A. (1994). Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacultural Engineering, 13: 283–300.
  • Buschmann, A.H., Westermeier, R. & Retamales, C.A. (1995). Cultivation of Gracilaria on the sea-bottom in southern Chile: a review. Journal of Applied Phycology, 7: 291–301.
  • Buschmann, A.H., Gonzalez, M. del C.H. & Varela, D. (2008). Seaweed future cultivation in Chile: perspectives and challenges. International Journal of Environment and Pollution, 33: 432–456.
  • Buschmann, A.H., Stead, R.A., Hernández-Gonazález, M.C., Pereda, S. V., Paredes, J.E. & Maldonado, M.A. (2013). Un análisis crítico sobre el uso de macroalgas como base para una acuicultura sustentable. Revista Chilena de Historia Natural, 86: 251–264.
  • Buschmann, A.H., Prescott, S., Potin, P., Faugeron, S., Vásquez, J.A., Camus, C., Infante, J., Hernández-González, M.C., Gutíerrez, A., Varela, D.A., Gutierrez, A. & Varela, D.A. (2014). The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera, in Chile. Advances in Botanical Research, 71: 161–188.
  • Cabral, P., Levrel, H., Viard, F., Frangoudes, K., Girard, S. & Scemama, P. (2016). Ecosystem services assessment and compensation costs for installing seaweed farms. Marine Policy, 71: 157–165.
  • Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M.D. & Luis Araus, J. (2012). High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. Journal of Integrative Plant Biology, 54: 312–320.
  • Callaway, E. (2015). Lab staple agar hit by seaweed shortage. Nature, 528: 171–172.
  • Callaway, R., Shinn, A.P., Grenfell, S.E., Bron, J.E., Burnell, G., Cook, E.J., Crumlish, M., Culloty, S., Davidson, K., Ellis, R.P., Flynn, K.J., Fox, C., Green, D.M., Hays, G.C., Hughes, A.D., Johnston, E., Lowe, C.D., Lupatsch, I., Malham, S., Mendzil, A.F., Nickell, T., Pickerell, T., Rowley, A.F., Stanley, M.S., Tocher, D.R., Turnbull, J.F., Webb, G., Wootton, E. & Shields, R.J. (2012). Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 22: 389–421.
  • Camus, C., Ballerino, P., Delgado, R., Olivera-Nappa, Á., Leyton, C. & Buschmann, A.H. (2016). Scaling up bioethanol production from the farmed brown macroalga Macrocystis pyrifera in Chile. Biofuels, Bioproducts and Biorefining, 10: 673–685.
  • Camus, C., Infante, J. & Buschmann, A.H. (2016). Overview of 3 year precommercial seafarming of Macrocystis pyrifera along the Chilean coast. Reviews in Aquaculture. doi: 10.1111/raq.12185.
  • Cao, J., Wang, J., Wang, S. & Xu, X. (2016). Porphyra species: a mini-review of its pharmacological and nutritional properties. Journal of Medicinal Food, 19: 111–119.
  • Chan, J. C. C., Cheung, P. C. K. & Ang, P. O. (1997). Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn.) C. Ag. Journal of Agricultural and Food Chemistry, 45: 3056–3059.
  • Chapman, A.S., Stévant, P., Larssen, W.E., Stévant, P. & Larssen, W.E. (2015). Food or fad? Challenges and opportunities for including seaweeds in a Nordic diet. Botanica Marina, 58: 423–433.
  • Chopin, T., Buschmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-González, J.A., Yarish, C. & Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37: 975–986.
  • Chopin, T., Cooper, J.A.J., Reid, G., Cross, S. & Moore, C. (2012). Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4: 209–220.
  • Chung, I.K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. (2011). Using marine macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology, 23: 877–886.
  • Clery, D. (2011). Greenhouse–power plant hybrid set to make Jordan’s desert bloom. Science, 331: 136.
  • Cornish, M.L., Critchley, A.T. & Mouritsen, O.G. (2015). A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia, 54: 649–666.
  • Cornish, M., Critchley, A. & Mouritsen, O. (2017). Consumption of seaweeds and the human brain. Journal of Applied Phycology. doi: 10.1007/s10811-016-1049-3.
  • Correa, T., Gutiérrez, A., Flores, R., Buschmann, A.H., Cornejo, P. & Bucarey, C. (2016). Production and economic assessment of giant kelp Macrocystis pyrifera cultivation for abalone feed in the south of Chile. Aquaculture Research, 47: 698–707.
  • Cottier-Cook, E.J., Nagabhatla, N., Badis, Y., Campbell, M.L., Chopin, T., Dai, W., Fang, J., He, P., Hewitt, C.L., Kim, G.H., Huo, Y., Jiang, Z., Kema, G., Li, X., Liu, F., Liu, H., Liu, Y., Lu, Q., Luo, Q., Mao, Y., Msuya, F.E., Rebours, C., Shen, H., Stentiford, G.D., Yarish, C., Wu, H., Yang, X., Zhang, J., Zhou, Y. & Gachon, C.M.M. (2016). Policy brief: safeguarding the future of the global seaweed aquaculture industry. UNU-INWEH and SAMS.
  • Craigie, J.S.J. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23: 371–393.
  • Delaney, A., Frangoudes, K. & Li, S.-A. (2016). Society and seaweed: understanding the past and present. In Seaweed in Health and Disease Prevention (Fleurence, J. & Levine, I. editors), 7–40. Elsevier Academic Press, London.
  • Dillehay, T.T.D., Ramirez, C., Pino, M., Collins, M.B., Rossen, J. & Pino-Navarro, J.D. (2008). Monte Verde: seaweed, food, medicine, and the peopling of South America. Science, 320: 784–786.
  • Duarte, C.M., Marbá, N. & Holmer, M. (2007). Rapid domestication of marine species. Science, 316: 382–383.
  • Duarte, C.M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4: 100.
  • Duarte, P. & Ferreira, J. (1997). A model for the simulation of macroalgal population dynamics and productivity. Ecological Modelling, 98: 199–214.
  • Erlandson, J., Braje, T., Gill, K. & Graham, M.H. (2015). Ecology of the kelp highway: did marine resources facilitate human dispersal from Northeast Asia to the Americas? Journal of Island and Coastal Archaeology, 10: 392–411.
  • European Commission (2012). Blue Growth: Opportunities for Marine and Maritime Sustainable Growth. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Brussels.
  • European Commission (2016). Salmon Aquaculture could Incorporate Seaweed and Sea Urchins to Reduce Nitrogen Enrichment. Science for Environment Policy, DG Environment News Alert Service, Bristol.
  • FAO (2014). The State of World Fisheries and Aquaculture 2014 (SOFIA).
  • FAO (2016). The State of World Fisheries and Aquaculture 2016 (SOFIA).
  • Fei, X. (2004). Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia, 512: 145–151.
  • Feng, Y.Y., Hou, L.C., Ping, N.X., Ling, T.D. & Kyo, C.I. (2004). Development of mariculture and its impacts in Chinese coastal waters. Reviews in Fish Biology and Fisheries, 14: 1–10.
  • Fernand, F., Israel, A., Skjermo, J., Wichard, T., Timmermans, K.R. & Golberg, A. (2016). Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renewable and Sustainable Energy Reviews, 75: 35–45.
  • Fletcher, R.L. (1995). Epiphytism and fouling in Gracilaria cultivation: an overview. Journal of Applied Phycology, 7: 325–333.
  • Fleurence, J. (2016). Seaweeds as food. In Seaweed in Health and Disease Prevention (Fleurence, J. & Levine, I., editors), 149–167. Elsevier Academic Press, London.
  • Friedlander, M. (1991). Growth rate, epiphyte biomass and agar yield of Gracilaria conferta in an annual outdoor experiment. 1. Irradiance and nitrogen. Bioresource Technology, 38: 203–208.
  • Friedlander, M. (2008). Advances in cultivation of Gelidiales. Journal of Applied Phycology, 20: 451–456.
  • Friedlander, M. & Levy, I. (1995). Cultivation of Gracilaria in outdoor tanks and ponds. Journal of Applied Phycology, 7: 315–324.
  • Friedlander, M., Galai, N. & Farbstein, H. (1990). A model of seaweed growth in an outdoor culture in Israel. Hydrobiologia, 204205: 367–373.
  • Fujita, D., Ishikawa, T., Kodama, S., Kato, Y. & Notoya, M. (2006). Distribution and recent reduction of Gelidium beds in Toyama Bay, Japan. Journal of Applied Phycology, 18: 591–598.
  • Gardner Pinfold (2013). Socio-economic Impact of Aquaculture in Canada. Fisheries and Oceans Canada Aquaculture Management Directorate. Gardner Pinfold Consultants Inc., Nova Scotia.
  • Garraín, D., Lechón, Y. & Santamaría, M. (2016). Environmental externalities assessment of a palm hydrotreated vegetable oil. Clean Technologies and Environmental Policy, 18: 1239–1244.
  • Golberg, A. & Liberzon, A. (2015). Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. Algal Research, 11: 28–32.
  • Gomez Pinchetti, J.L. & Martel Quintana, A. (2016). Algae production and their potential contribution to a nutritional sustainability. Journal of Environment and Health Science, 2: 1–3.
  • Guillemin, M.-L., Faugeron, S., Destombe, C., Viard, F., Correa, J.A. & Valero, M. (2008). Genetic variation in wild and cultivated populations of the haploid– diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution, 62: 1500–1519.
  • Hafting, J.J.T., Craigie, J.S.J.J.S., Stengel, D.B.D., Loureiro, R.R., Buschmann, A.H., Yarish, C., Edwards, M.D. & Critchley, A.T. (2015). Prospects and challenges for industrial production of seaweed bioactives. Journal of Phycology, 51: 821–837.
  • Halling, C., Wikström, S.A., Lilliesköld-Sjöö, G., Mörk, E., Lundsør, E. & Zuccarello, G.C. (2013). Introduction of Asian strains and low genetic variation in farmed seaweeds: indications for new management practices. Journal of Applied Phycology, 25: 89–95.
  • Harley, C.D.G., Anderson, K.M., Demes, K.W., Jorve, J.P., Kordas, R.L., Coyle, T.A. & Graham, M.H. (2012). Effects of climate change on global seaweed communities. Journal of Phycology, 48: 1064–1078.
  • Harrison, P.J. & Hurd, C.L. (2001). Nutrient physiology of seaweeds: application of concepts to aquaculture. Cahiers de Biologie Marine, 42: 71–82.
  • Himaya, S.W.A. & Kim, S.-K. (2015). Marine nutraceuticals. In Handbook of Marine Biotechnology (Kim, S.-K., editor), 995–1014. Springer, Berlin.
  • Hughes, A.D., Kelly, M.S., Black, K.D. & Stanley, M.S. (2012). Biogas from macroalgae: is it time to revisit the idea? Biotechnology for Biofuels, 5: 86.
  • Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C.S. (2014). Seaweed Ecology and Physiology. 2nd ed. Cambridge University Press, Cambridge.
  • Iersel, S. Van & Flammini, A. (2010). Algae-based Biofuels: Applications and Co-products. FAO Aquatic Biofuels Working Group Review. FAO.
  • Ji, Y., Xu, Z., Zou, D. & Gao, K. (2016). Ecophysiological responses of marine macroalgae to climate change factors. Journal of Applied Phycology, 28: 2953–2967.
  • Kim, J. K., Yarish, C., Hwang, E.K., Park, M. & Kim, Y. (2017). Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae, 32: 1–13.
  • Korzen, L., Peled, Y., Shamir, S.Z., Shechter, M., Gedanken, A., Abelson, A. & Israel, A. (2015). An economic analysis of bioethanol production from the marine macroalga Ulva (Chlorophyta). Technology, 3: 114–118.
  • Krause, G., Brugere, C., Diedrich, A., Ebeling, M.M.W., Ferse, S.C.A., Mikkelsen, E., Pérez Agúndez, J.A., Stead, S.M., Stybel, N. & Troell, M. (2015). A revolution without people? Closing the people–policy gap in aquaculture development. Aquaculture, 447: 44–55.
  • Krueger-Hadfield, S.A., Kollars, N.M., Strand, A.E., Byers, J.E., Shainker, S.J., Terada, R., Greig, T.W., Hammann, T., Murray, D.C., Weinberger, F. & Sotka, E.E. (2017). Genetic identification of source and likely vector of a widespread marine invader. Ecology and Evolution, 7: 4432–4447.
  • Krumhansl, K.A.K., Okamoto, D.D.K.D., Rassweiler, A., Novak, M., Bolton, J.J., Cavanaugh, K.C., Connell, S.D., Johnson, C.R., Konar, B., Ling, S.D., Micheli, F., Norderhaug, K.M., Pérez-Matus, A., Sousa-Pinto, I., Reed, D.C., Salomon, A.K., Shears, N.T., Wernberg, T., Anderson, R.J., Barrett, N.S., Buschmann, A.H., Carr, M.H., Caselle, J.E., Derrien-Courtel, S., Edgar, G.J., Edwards, M., Estes, J.A., Goodwin, C., Kenner, M.C., Kushner, D.J., Moy, F.E., Nunn, J., Steneck, R.S., Vásquez, J., Watson, J., Witman, J.D. & Byrnes, J.E.K. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 113: 13785–13790.
  • Kuschel, F. & Buschmann, A.H. (1991). Abundance, effects and management of epiphytism in intertidal cultures of Gracilaria (Rhodophyta) in southern Chile. Aquaculture, 92: 7–19.
  • Lee, C.S.C. & Ang, P. (1991). A simple model for seaweed growth and optimal harvesting strategy. Ecological Modelling, 55: 67–74.
  • Lehahn, Y., Ingle, K.N. & Golberg, A. (2016). Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Research, 17: 150–160.
  • Lenstra, W., Hal, J.J. Van, Reith, J., Lenstra, J., Hal, J.J. Van & Reith, H. (2011). Economic Aspects of Open Ocean Seaweed Cultivation. Energy Research Centre of the Netherlands.
  • Levine, I. (2016). Algae: a way of life and health. In Seaweed in Health and Disease Prevention (Fleurence, J. & Levine, I. A., editors), 1–5. Elsevier Academic Press, London.
  • Li, L., Zhang, Q. & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors, 14: 20078–20111.
  • Li, X., Zhang, Z., Qu, S., Liang, G., Zhao, N., Sun, J., Song, S., Cao, Z., Li, X., Pan, J., Luo, S., Zhang, L., Cui, C., Peng, J., Li, Y., Wu, R., Zhao, J., Qian, R., Wang, L., Sai, S. & Yang, G. (2016). Breeding of an intraspecific kelp hybrid Dongfang no. 6 (Saccharina japonica, Phaeophyceae, Laminariales) for suitable processing products and evaluation of its culture performance. Journal of Applied Phycology 28: 439–447.
  • Lux Spotlight blog (2015). New Protein Sources and the Billions of Mouths and Dollars That Will Follow |Lux Spotlight. Available at http://blog.luxresearchinc.com/blog/2015/02/new-protein-sources-and-the-billions-of-mouths-and-dollars-that-will-follow/(last accessed 24 February 2017).
  • Mangos, A., Bassino, J.-P. & Sauzade, D. (2010). The economic value of sustainable benefits rendered by the Mediterranean marine ecosystems. Blue Plan Papers 8 UNEP/MAP Regional Activity Centre. 79 pp.
  • Manninen, K., Huttunen, S., Seppälä, J., Laitinen, J. & Spilling, K. (2016). Resource recycling with algal cultivation: environmental and social perspectives. Journal of Cleaner Production, 124: 495–505.
  • Masuda, T., Furuya, K., Kohashi, N., Sato, M., Takeda, S., Uchiyama, M., Horimoto, N. & Ishimaru, T. (2010). Lagrangian observation of phytoplankton dynamics at an artificially enriched subsurface water in Sagami Bay, Japan. Journal of Oceanography, 66: 801–813.
  • Masutani, S.M. & Takahashi, P.K. (1999). Ocean thermal energy conversion. In Wiley Encyclopedia of Electrical and Electronics Engineering (Peterca, M., editor). John Wiley & Sons, Chichester.
  • Mazarrasa, I., Olsen, Y.S., Mayol, E., Marbà, N. & Duarte, C.M. (2014). Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnology Advances, 32: 1028–1036.
  • McHugh, D.J. (2003). Seaweeds uses as human foods. In A Guide to the Seaweed Industry. FAO Fisheries Technical Paper 441. FAO, Rome.
  • Meland, M. & Rebours, C. (2012). Short description of the Norwegian seaweed industry. Bioforsk FOKUS, 7: 275–277.
  • Moustafa, K. (2017). Greening drylands with seawater easily and naturally. Trends in Biotechnology, 35: 189–191.
  • Msuya, F.E. (2011). The impact of seaweed farming on the socioeconomic status of coastal communities in Zanzibar, Tanzania. World Aquaculture, 42: 45–48.
  • Msuya, F.E. & Neori, A. (2008). Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. Journal of Applied Phycology, 20: 1021–1031.
  • Mutka, A.M. & Bart, R.S. (2015). Image-based phenotyping of plant disease symptoms. Frontiers in Plant Science, 5: 1–7.
  • Neill, K., Heesch, S. & Nelson, W. (2008). Diseases, pathogens and parasites of Undaria pinnatifida. Ministry of Agriculture and Forestry, Wellington, NZ.
  • Neori, A. (2016). Can sustainable mariculture match agriculture’ s output? Global Aquaculture advocate. Available on-line at: http://advocate.gaalliance.org/can-sustainable-mariculture-match-agricultures-output/.
  • Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M. & Yarish, C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231: 361–391.
  • Neori, A., Troell, M., Chopin, T., Yarish, C., Critchley, A. & Buschmann, A.H. (2007). The need for a balanced ecosystem approach to blue revolution aquaculture. Environment: Science and Policy for Sustainable Development, 49: 36–43.
  • Neori, A., Tadmor Shalev, N. & Agami, M. (2016). Seaweed aquaculture as a match for agriculture. In 22nd International Seaweed Symposium, Copenhagen.
  • Neori, A., Shpigel, M., Guttman, L. & Israel, A. (2017). The development of polyculture and integrated multi-trophic aquaculture (IMTA) in Israel: a review. Israeli Journal of Aquaculture – Bamidgeh, 69: IJA_69.2017.1385.
  • Nobre, A. M., Robertson-Andersson, D., Neori, A. & Sankar, K. (2010). Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306: 116–126.
  • Notoya, M. (2010). Production of biofuel by macroalgae with preservation of marine resources and environment. In Seaweeds and their Role in Globally Changing Environments (Seckbach J., Einav R. & Israel, A., editors), 217–228. Springer, Dordrecht.
  • Pascual, U., Muradian, R., Brander, L., Gómez-Baggethun, E., Martín-López, B., Verma, M., Armsworth, P., Christie, M., Cornelissen, H., Eppink, F. & Farley, J. (2010). The economics of valuing ecosystem services and biodiversity. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations (Kumar, P., editor), 183–256. TEEB, Earthscan, London and Washington.
  • Pelc, R. & Fujita, R.M. (2002). Renewable energy from the ocean. Marine Policy, 26: 471–479.
  • Pellizzari, F. & Reis, R.P. (2011). Seaweed cultivation on the southern and southeastern Brazilian coast. Revista Brasileira de Farmacognosia, 21: 305–312.
  • Pereira, R. & Yarish, C. (2008). Mass production of marine macroalgae. In Ecological Engineering, Vol. 3 of Encyclopedia of Ecology (Jørgensen, S.E. & Fath, B.D., editors), 2236–2247. Elsevier, Oxford.
  • Peteiro, C., Sánchez, N. & Martínez, B. (2016). Mariculture of the Asian kelp Undaria pinnatifida and the native kelp Saccharina latissima along the Atlantic coast of Southern Europe: an overview. Algal Research, 15: 9–23.
  • Radulovich, R., Neori, A., Valderrama, D., Reddy, C.R.K., Cronin, H. & Forster, J. (2015). Farming of seaweeds. In Seaweed Sustainability – Food and Nonfood Applications (Tiwari, B. and Troy, D., editors). 27–59. Academic Press, London.
  • Rebours, C., Marinho-Soriano, E., Zertuche-González, J.A., Hayashi, L., Vásquez, J.A., Kradolfer, P., Soriano, G., Ugarte, R., Abreu, M.H., Bay-Larsen, I., Hovelsrud, G., Rødven, R. & Robledo, D. (2014). Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology, 26: 1939–1951.
  • Reed, J. (2017). New pipeline plan may help save the Dead Sea. Financial Times, 23 March 2017. Available at: https://www.ft.com/content/c9a188c4-bad1-11e6-8b45-b8b81dd5d080?mhq5j=e3.
  • Robinson, N., Winberg, P. & Kirkendale, L. (2013). Genetic improvement of macroalgae: status to date and needs for the future. Journal of Applied Phycology, 25: 703–716.
  • Sahoo, D. & Yarish, C. (2005). Mariculture of seaweeds. In Phycological Methods: Algal Culturing Techniques (Andersen, R.A., editor), 219–237. Elsevier Academic Press, Burlington.
  • Santelices, B. (1999). A conceptual framework for marine agronomy. Hydrobiologia, 398/399: 15–23.
  • Santelices, B. & Doty, M. (1989). A review of Gracilaria farming. Aquaculture, 78: 95–133.
  • Seip, K.L. (1980). A computational model for growth and harvesting of the marine alga Ascophyllum nodosum. Ecological Modeling, 8: 189–199.
  • Shefer, S., Israel, A., Golberg, A. & Chudnovsky, A. (2017). Carbohydrate-based phenotyping of the green macroalga Ulva fasciata using near-infrared spectrometry: potential implications for marine biorefinery. Botanica Marina, 1–11.
  • Shpigel, M. (2013). Mariculture mariculture systems, integrated land-based. In Sustainable Food Production (Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I. & Whitelaw, C.B.A., editors), 1111–1120. Springer, New York.
  • Skjermo, J., Aasen, I.M., Arff, J., Broch, O.J., Carvajal, A., Christie, H., Forbord, S., Olsen, Y., Reitan, K.I., Rustad, T., Sandquist, J., Solbakken, R., Wittgens, K.B.S.B., Wolff, R. & Handå, A. (2014). A New Norwegian Bioeconomy Based on Cultivation and Processing of Seaweeds: Opportunities and R&D Needs. SINTEF Fisheries and Aquaculture. Sintef, Trondheim.
  • Stévant, P., Rebours, C. & Chapman, A. (2017). Seaweed aquaculture in Norway: recent industrial developments and future perspectives. Aquaculture International, 25: 1373–1390.
  • Straub, S., Thomsen, M. & Wernberg, T. (2016). The dynamic biogeography of the Anthropocene: the speed of recent range shifts in seaweeds. In Seaweed Phylogeography (Hu, Z.-M. & Fraser, C., editors), 63–93. Springer, Amsterdam.
  • Suo, R. & Wang, Q. (1992). Laminaria culture in china. INFOFISH International, 1: 40–42
  • Synytsya, A., Čopíková, J., Kim, W.J. & Park, Y. I. (2015). Cell wall polysaccharides of marine algae. In Handbook of Marine Biotechnology (Kim, S.-K., editor), 543–590. Springer, Berlin.
  • Tennessen, D.J., Bula, R.J. & Sharkey, T.D. (1995). Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynthesis Research, 44: 261–269.
  • Thanh-Sang Vo, Ngo, D.-H. & Kim, S.-K. (2012). Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochemistry, 47: 386–394.
  • Tietenberg, T. & Lewis, L. (2016). Environmental and Natural Resource Economics. 10th ed. Routledge, New York.
  • Tinch, R. & Mathieu, L. (2011). Marine and Coastal Ecosystem Services: Valuation Methods and their Practical Application. Regional Seas UNEP-WCMC Biodiversity Series, Cambridge.
  • Trivedi, J., Aila, M., Bangwal, D.D.P., Kaul, S. & Garg, M.O. (2015). Algae based biorefinery – how to make sense? Renewable and Sustainable Energy Reviews, 47: 295–307.
  • Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A.H. & Fang, J.G. (2009). Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297: 1–9.
  • Tseng, C.K. & Fei, X.G. (1987). Macroalgal commercialization in the Orient. In Twelfth International Seaweed Symposium (Ragan, M.A. & Bird, C.J., editors), 167–172. Springer, Amsterdam.
  • Ugarte, R. & Sharp, G. (2001). A new approach to seaweed management in eastern Canada: the case of Ascophyllum nodosum. Cahiers de Biologie Marine, 42: 63–70.
  • Valero, M., Guillemin, M.-L., Destombe, C., Jacquemin, B., Gachon, C., Badis, Y., Buschmann, A.H., Camus, C. & Faugeron, S. (2017). Perspectives on domestication research for sustainable seaweed aquaculture. Perspectives in Phycology, 4: 33–46.
  • Vásquez, J.A. (2008). Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. Journal of Applied Phycology, 20: 457–467.
  • Vásquez, J.A.J., Zuñiga, S., Tala, F., Piaget, N., Rodríguez, D.C. & Vega, J.M.A. (2014). Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. Journal of Applied Phycology, 26: 1081–1088.
  • Walter, A., Liebisch, F. & Hund, A. (2015). Plant phenotyping: from bean weighing to image analysis. Plant Methods, 11: 1–11.
  • Wells, M.M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E. & Brawley, S.H. (2016). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949–982.
  • Westermeier, R., Patiño, D.J., Murúa, P., Quintanilla, J.C., Correa, J., Buschmann, A.H. & Barros, I. (2012). A pilot-scale study of the vegetative propagation and suspended cultivation of the carrageenophyte alga Gigartina skottsbergii in southern Chile. Journal of Applied Phycology, 24: 11–20.
  • Yang, Y., Chai, Z., Wang, Q., Chen, W., He, Z. & Jiang, S. (2015a). Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Research, 9: 236–244.
  • Yang, Y., Liu, Q., Chai, Z. & Tang, Y. (2015b). Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta). Journal of Applied Phycology, 27: 2341–2352.
  • Yang, L.-E., Lu, Q.-Q. & Brodie, J. (2017). A review of the bladed Bangiales (Rhodophyta) in China: history, culture and taxonomy. European Journal of Phycology, 52: 1–13.
  • Zhang, Q.S., Tang, X.X., Cong, Y.Z., Qu, S.C., Luo, S.J., Yang, G.P. (2007). Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. Journal of Applied Phycology, 19: 303–311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.