811
Views
13
CrossRef citations to date
0
Altmetric
Articles

Effects of Daphnia exudates and sodium octyl sulphates on filament morphology and cell wall thickness of Aphanizomenon gracile (Nostocales), Cylindrospermopsis raciborskii (Nostocales) and Planktothrix agardhii (Oscillatoriales)

, , , , , & show all
Pages 280-289 | Received 15 Jun 2017, Accepted 16 Jan 2018, Published online: 24 Apr 2018

References

  • Adams, D.G. & Duggan, P.S. (1999). Tansley Review no. 107. Heterocyst and akinete differentiation in cyanobacteria. New Phytologist, 144: 3–33.
  • Bláha, L., Babica, P. & Maršálek, B. (2009). Toxin produced in cyanobacterial water blooms – toxicity and risks. Interdisciplinary Toxicology, 2: 36–41.
  • Bothe, H. (1982). Nitrogen fixation. In The Biology of Cyanobacteria (Carr, N.G. & Whitton, B.A., editors), 87–104. Blackwell, Oxford.
  • Bugajev, A.O. & Koreiviene, J. (2015). Determining optimal growth conditions for the highest biomass microalgae species in Lithuanian part of the Curonian Lagoon for further cultivation. International Journal of Environmental Research, 9: 233–246.
  • Burns, C.W. (1968). Direct observations of mechanisms regulating feeding behaviour of Daphnia, in lakewater. International Revue der Gesamten Hydrobiologie und Hydrographie, 53: 83–100.
  • Cerbin, S., Wejnerowski, L. & Dziuba, M. (2013). Aphanizomenon gracile increases in width in the presence of Daphnia. A defence mechanism against grazing? Journal of Limnology, 72: 505–511.
  • Christiansen, G., Molitor, C., Philmus, B. & Kurmayer, R. (2008). Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Molecular Biology and Evolution, 25: 1695–1704.
  • Dokulil, M.T. & Teubner, K. (2000). Cyanobacterial dominance in lakes. Hydrobiologia, 438: 1–12.
  • Donald, D.B., Bogard, M.J., Finlay, K. & Leavitt, P.R. (2011). Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnology and Oceanography, 56: 2161–2175.
  • Elser, J.J., Goff, N.C., MacKay, N.A., Amand, A.L.St., Elser, M.M. & Carpenter, S.R. (1987). Species-specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. Journal of Plankton Research, 9: 699–717.
  • Elser, J.J., Gudex, L., Kyle, M., Ishikawa, T. & Urabe, J. (2001). Effects of zooplankton on nutrient availability and seston C: N: P stoichiometry in inshore waters of Lake Biwa, Japan. Limnology, 2: 91–100.
  • Ferber, L.R., Levine, S.N., Lini, A. & Livingston, G.P. (2004). Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology, 49: 690–708.
  • Fiałkowska, E. & Pajdak-Stós A. (2014). Chemical and mechanical signals in inducing Phormidium (Cyanobacteria) defence against their grazers. FEMS Microbiology Ecology, 89: 659–669.
  • Flores, E. & Herrero, A. (1994). Assimilatory nitrogen metabolism and its regulation. In The Molecular Biology of Cyanobacteria (Bryant, D.A., editor), 487–517. Kluwer Academic, Dordrecht.
  • Ger, K.A., Urrutia-Cordero, P., Frost, P.C., Hansson, L.A., Sarnelle, O., Wilson, A.E. & Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 54: 128–144.
  • Gliwicz, Z.M. (1990). Why do cladocerans fail to control algal blooms? Hydrobiologia, 200/201: 83–97.
  • Gliwicz, Z.M. & Siedlar, E. (1980). Food size limitation and algae interfering with food collection in Daphnia. Archiv für Hydrobiologie, 88: 155–177.
  • Guerrero, M.G. & Lara, C. (1987). Assimilation of inorganic nitrogen. In The Cyanobacteria (Fay, P. & Van Baalen, C., editors), 163–185. Elsevier Science, Amsterdam.
  • Guillard, R.R.L. & Lorenzen, C.J. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8: 10–14.
  • Hautala, H., Lemminmäki, U, Spoof, L., Nybom, S., Meriluoto, J. & Vehniäinen, M. (2013). Quantitative PCR detection and improved sample preparation of microcystin‐producing Anabaena, Microcystis and Planktothrix. Ecotoxicology and Environmental Safety, 87: 49–56.
  • Hoiczyk, E. & Hansel, A. (2000). Cyanobacterial cell walls: news from an unusual prokaryotic envelope. Journal of Bacteriology, 182: 1191–1199.
  • Hong, Y., Burford, M.A., Ralph, P.J. & Doblin, M.A. (2015). Subtropical zooplankton assemblage promotes the harmful cyanobacterium Cylindrospermopsis raciborskii in a mesocosm experiment. Journal of Plankton Research, 37: 90–101.
  • Jang, M.H., Ha, K., Joo, G.J. & Takamura, N. (2003). Toxin production in cyanobacteria is increased by exposure to zooplankton. Freshwater Biology, 48: 1540–1550.
  • Kerfoot, W.C., Levitan, C. & DeMott, W.R. (1988). Daphnia-phytoplankton interactions: density-dependent shifts in resource quality. Ecology, 69: 1806–1825.
  • Kohl, J.G., Dudel, G., Schlangstedt, M. & Kühl, H. (1985). On the morphological and ecological distinction of Aphanizomenon flos-aquae Ralfs ex Born et Flah and Aphanizomenon gracile (Lemm) Lemm. Archiv für Protistenkunde, 130: 119–131.
  • Kokociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., Hautala, H., Vehniäinen, M., Pawełczyk, J. & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20: 5243–5264.
  • Komárek, J. (2013). Cyanoprokaryota: 3. Teil/3rd part: Heterocytous genera. In Süßwasserflora von Mitteleuropa, Bd. 19/3 (Büdel, B., Gärtner, G., Krienitz, L. & Schagerl, L., editors). Springer Spectrum, Berlin, Heidelberg.
  • Komárek, J. & Komárková, J. (2004). Taxonomic review of the cyanoprokaryotic genera Planktothrix and Planktothricoides. Czech Phycology, 4: 1–18.
  • Komárková, J., Laudares-Silva, R. & Senna, P.A.C. (1999). Extreme morphology of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in the Lagoa do Peri, a freshwater coastal lagoon, Santa Catarina, Brazil. Algological Studies, 94: 207–222.
  • Kruskopf, M. & Du Plessis, S. (2006). Growth and filament length of the bloom forming Oscillatoria simplicissima (Oscillatoriales, Cyanophyta) in varying N and P concentrations. Hydrobiologia, 556: 357–362.
  • Kumar, K.R.A., Herrera, M. & Golden, J.W. (2010). Cyanobacterial heterocysts. Cold Spring Harbor Perspectives in Biology, 2/4/a000315.
  • Lehman, J.T. & Sandgren, C.D. (1985). Species-specific rates of growth and grazing loss among freshwater algae. Limnology and Oceanography, 30: 34–46.
  • Lürling, M. & Van Donk, E. (1997). Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnology and Oceanography, 42: 783–788.
  • Lynch, M. (1980). Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex. In Evolution and Ecology of Zooplankton Communities (Kerfoot, W.C., editor), 299–304. University Press of New England, Hanover.
  • Martin-Figueroa, E., Navarro, F. & Florencio, F.J. (2000). The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS Letters, 476: 282–286.
  • Meeks, J.C. & Elhai, J. (2002). Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and Molecular Biology Reviews, 66: 94–121.
  • Nadin-Hurley, C.M. & Duncan, A. (1976). A comparison of daphnid gut particles with the sestonic particles present in two Thames Valley reservoirs throughout 1970 and 1971. Freshwater Biology, 6: 109–123.
  • Ohmori, M., Ohmori, K. & Strotmann, K. (1977). Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica. Archives of Microbiology, 114: 225–229.
  • Pondaven, P., Gallinari, M., Chollet, S., Bucciarelli, E., Sarthou, G., Schultes, S. & Jean, F. (2007). Grazing-induced changes in cell wall silicification in a marine diatom. Protist, 158: 21–28.
  • R Core Team (2013). R: A language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org/
  • Sommer, U. (1985). Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnology and Oceanography, 30: 335–346.
  • Sterner, R.W. (1986). Herbivores’ direct and indirect effects on algal populations. Science, 231: 605–607.
  • Tandeau de Marsac, N. & Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiology Letters, 104: 119–189.
  • Van Donk, E., Ianora, A. & Vos, M. (2011). Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia, 668: 3–19.
  • Van Gremberghe, I., Vanormelingen, P., Van der Gucht, K., Mancheva, A., D’Hondt, S., De Meester, L. & Vyverman, W. (2009). Influence of Daphnia infochemicals on functional traits of Microcystis strains (Cyanobacteria). Hydrobiologia, 635: 147–155.
  • Wang, X., Qin, B., Gao, G. & Paerl, H.W. (2010). Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. Journal of Plankton Research, 32: 457–470.
  • Webster, K.E. & Peters, R.H. (1978). Some size-dependent inhibitions of larger cladoceran filters in filamentous suspensions. Limnology and Oceanography, 23: 1238–1245.
  • Wejnerowski, L., Cerbin, S. & Dziuba, M.K. (2015). Thicker filaments of Aphanizomenon gracile are more harmful to Daphnia than thinner Cylindrospermopsis raciborskii. Zoological Studies, 54: 2.
  • Wejnerowski, L., Cerbin, S., Wojciechowicz, M.K. & Dziuba, M.K. (2016). Differences in cell wall of thin and thick filaments of cyanobacterium Aphanizomenon gracile SAG 31.79 and their implications for different resistance to Daphnia grazing. Journal of Limnology, 75: 634–643.
  • Wejnerowski, L., Cerbin, S. & Dziuba, M.K. (2017a). Setae thickening in Daphnia magna alleviates the food stress caused by the filamentous cyanobacteria. Aquatic Ecology, 51: 485–498.
  • Wejnerowski, L., Wojciechowicz, M.K., Glama, M., Olechnowicz, J., Dziuba, M.K. & Cerbin, S. (2017b). Solitary terminal cells of Aphanizomenon gracile (Cyanobacteria, Nostocales) can divide and renew trichomes. Phycological Research, doi: 10.1111/pre.12182.
  • Yasumoto, K., Nishigami, A., Yasumoto, M., Kasai, F., Okado, Y., Kusumi, T. & Ooi, T. (2005). Aliphatic sulfates released from Daphnia induce morphological defense of phytoplankton: isolation and synthesis of kairomones. Tetrahedron Letters, 46: 4765–4767.
  • Yasumoto, K., Nishigami, A., Aoi, H., Tsuchihashi, C., Kasai, F., Kusumi, T. & Ooi, T. (2008). Isolation and absolute configuration determination of aliphatic sulfates as the Daphnia kairomones inducing morphological defense of a phytoplankton – Part 2. Chemical and Pharmaceutical Bulletin, 56: 129–132.
  • Yema, L., Litchman, E., de Tezanos Pinto, P. (2016). The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria. Harmful Algae, 60: 131–138.
  • Zapomělová, E., Řeháková, K., Znachor, P. & Komárková, J. (2007). Morphological diversity of coiled planktonic types of the genus Anabaena (cyanobacteria) in natural populations – taxonomic consequences. Cryptogamie Algologie, 28: 353–371.
  • Zapomělová, E., Hrouzek, P., Řeháková, K., Šabacká, M., Stibal, M., Caisová, L., Komárková, J. & Lukešová, A. (2008). Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition. Folia Microbiologica, 53: 333–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.