1,070
Views
15
CrossRef citations to date
0
Altmetric
Articles

Biomass productivity of Scenedesmus dimorphus (Chlorophyceae) was improved by using an open pond–photobioreactor hybrid system

, , &
Pages 127-134 | Received 11 Dec 2017, Accepted 19 Jul 2018, Published online: 20 Nov 2018

References

  • Bao, Y., Liu, M., Wu, X., Cong, W. & Ning, Z. (2012). In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond. Biotechnology and Bioprocess Engineering, 17: 93–99.
  • Borowitzka, M. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70: 313–321.
  • Borowitzka, M. & Vonshak, A. (2017). Scaling up microalgal cultures to commercial scale. European Journal of Phycology, 52: 407–418.
  • Boyer, J.S. (1982). Plant productivity and environment. Science, 218: 443–448.
  • Brennan, L. & Owende, P. (2010). Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14: 557–577.
  • Carvalho, A.P. & Malcata, F.X. (2001). Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow fiber modules. Biotechnology Progress, 17: 265–272.
  • Chu, W.L. (2017). Strategies to enhance production of biomass and lipids of microalgae for biofuel feedstock. European Journal of Phycology, 52: 419–437.
  • Doucha, J. & Lívanský, K. (2009). Outdoor open thin-layer microalgal photobioreactor: potential productivity. Journal of Applied Phycology, 21: 111–117.
  • Grima, E., Belarbi, E., Fernández, F., Medina, A. & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20: 491–515.
  • Grobbelaar, J.U. (1991). The influence of light/dark cycles in mixed algal cultures on their productivity. Bioresource Technology, 38: 189–194.
  • Hsueh, H., Chu, H. & Yu, S. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66: 878–886.
  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54: 621–639.
  • Janssen, M., Kuijpers, T.C., Veldhoen, B., Ternbach, M.B., Tramper, J., Mur, L.R. & Wijffels, R.H. (1999). Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87s. Journal of Biotechnology, 70: 323–333.
  • Jiménez, C., Cossío, B., Labella, D. & Niell, F. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 217: 179–190.
  • Lee, Y.K. (2001). Microalgal mass culture systems and methods: their limitation and potential. Journal of Applied Phycology, 13: 307–315.
  • Liang, Y., Sarkany, N. & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31: 1043–1049.
  • Mata, T.M., Martins, A.A. & Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14: 217–232.
  • Matthijs, H., Balke, H., Van Hes, U., Kroon, B., Mur, L. & Binot, R. (1996). Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering, 50: 98–107.
  • Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57: 287–293.
  • Putt, R., Singh, M., Chinnasamy, S. & Das, K.C. (2011). An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresource Technology, 102: 3240–3245.
  • Richmond, A., Zhang, C. & Zarmi, Y. (2003). Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomolecular Engineering, 20: 229–236.
  • Siqwepu, O., Richoux, N. & Vine, N. (2017). The effect of different dietary microalgae on the fatty acid profile, fecundity and population development of the calanoid copepod Pseudodiaptomus hessei (Copepoda: Calan-oida). Aquaculture, 468: 162–168.
  • Sompech, K., Chisti, Y. & Srinophakun, T. (2012). Design of raceway ponds for producing microalgae. Biofuels, 3: 387–397.
  • Sørensen, M., Berge, G., Reitan, K. & Ruyter, B. (2016). Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar) - effect on nutrient digestibility, growth and utilization of feed. Aquaculture, 460: 116–123.
  • Stanier, R.Y., Kunisawa, R., Mandel, M. & Cohenbaz, G. (1971). Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews, 35: 171–205.
  • Stirbet, A. & Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104: 236–257.
  • Tredici, M.R. (2010). Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels, 1: 143–162.
  • Tredici, M.R., Papuzzo, T. & Tomaselli, L. (1986). Outdoor mass-culture of Spirulina maxima in sea-water. Applied Microbiology and Biotechnology, 24: 47–50.
  • Ugwu, C.U., Aoyagi, H. & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99: 4021–4028.
  • Vonshak, A., Torzillo, G., Accolla, P. & Tomaselli, L. (1996). Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiologia Plantarum, 97: 175–179.
  • Walker, T.L., Purton, S., Becker, D. & Collet, C. (2005). Microalgae as bioreactors. Plant Cell Reports, 24: 629–641.
  • Wang, J., Liu, J.L. & Liu, T.Z. (2015). The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnology for Biofuels, 8: 49.
  • Wijffels, R.H. & Barbosa, M.L. (2010). An outlook on microalgal biofuels. Science, 330: 913.
  • Zhu, X.G., Long, S.P. & Ort, D.R. (2008). What is the maxiumum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 19: 153–159.
  • Zittelli, G., Rodolfi, L., Biondi, N., Mario, R. & Tredici, M. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261: 932–943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.