617
Views
10
CrossRef citations to date
0
Altmetric
Articles

Analysis of mitochondrial and chloroplast genomes in two volvocine algae: Eudorina elegans and Eudorina cylindrica (Volvocaceae, Chlorophyta)

, , , ORCID Icon &
Pages 193-205 | Received 13 May 2018, Accepted 08 Aug 2018, Published online: 20 Feb 2019

References

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A. & Pevzner, P.A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19: 455–477.
  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27: 573–580.
  • Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69: 313–319.
  • Capellagutiérrez, S., Sillamartínez, J.M. & Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25: 1972–1973.
  • Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z, Zhang, X., Wang, J., Yang, H., Fang, L. & Chen, Q. (2017). SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 7: gix120.
  • Darling, A.E., Mau, B. & Perna, N.T. (2010). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE, 5: e11147.
  • Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772.
  • Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 1792–1797.
  • Featherston, J., Arakaki, Y., Nozaki, H., Durand, P.M. & Smith, D.R. (2016). Inflated organelle genomes and a circular-mapping mtDNA probably existed at the origin of coloniality in volvocine green algae. European Journal of Phycology, 51: 369–377.
  • Goldstein, M. (1964). Speciation and mating behavior in Eudorina. Journal of Protozoology, 11: 317–344.
  • Hallmann, A. (2006). Morphogenesis in the family Volvocaceae: different tactics for turning an embryo right-side out. Protist, 157: 445–461.
  • Hallmann, A. (2011). Evolution of reproductive development in the volvocine algae. Sexual Plant Rreproduction, 24: 97–112.
  • Hamaji, T., Smith, D.R., Noguchi, H., Toyoda, A., Suzuki, M., Kawaitoyooka, H., Fujiyama, A., Nishii, I., Marriage, T., Olson, B.J.S.C. & Nozaki, H. (2013). Mitochondrial and plastid genomes of the colonial green alga Gonium pectorale give insights into the origins of organelle DNA architecture within the Volvocales. PLoS ONE, 8: e57177.
  • Hamaji, T., Kawai-Toyooka, H., Toyoda, A., Minakuchi, Y., Suzuki, M., Fujiyama, A., Nozaki, H. & Smith, D.R. (2017). Multiple independent changes in mitochondrial genome conformation in chlamydomonadalean algae. Genome Biology and Evolution, 9: 993–999.
  • Kato, S. (1982). Laboratory culture and morphology of Colacium vesiculosum Ehrb. (Euglenophyceae). Japanese Journal of Phycology, 30: 63–67.
  • Katoh, K. & Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772–780.
  • Kirk, D.L. (1999). Evolution of multicellularity in the volvocine algae. Current Opinion in Plant Biology, 2: 496–501.
  • Kirk, D.L. (2005). A twelve-step program for evolving multicellularity and a division of labor. BioEssays, 27: 299–310.
  • Kryazhimskiy, S. & Plotkin, J.B. (2008). The population genetics of dN/dS. PLoS Genetics, 4: e1000304.
  • Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870–1874.
  • Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34: 772–773.
  • Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint, arXiv:1303.3997.
  • Liu, C., Shi, L., Zhu, Y., Chen, H., Zhang, J., Lin, X. & Guan, X. (2012). CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics, 13: 715.
  • Lohse, M., Drechsel, O. & Bock, R. (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics, 52: 267–274.
  • Lowe, T.M. & Chan, P.P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44: W54–W57.
  • Moore, L.J. & Coleman, A.W. (1989). The linear 20 kb mitochondrial genome of Pandorina morum (Volvocaceae, Chlorophyta). Plant Molecular Biology, 13: 459–465.
  • Nozaki, H. & Itoh, M. (1994). Phylogenetic relationships within the colonial volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. Journal of Phycology, 30: 353–365.
  • Nozaki, H. & Kuroiwa, T. (1992). Ultrastructure of the extracellular matrix and taxonomy of Eudorina, Pleodorina and Yamagishiella gen. nov. (Volvocaceae, Chlorophyta). Phycologia, 31: 529–541.
  • Nozaki, H., Yamada, T.K., Takahashi, F., Matsuzaki, R. & Nakada, T. (2014). New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy. BMC Evolutionary Biology, 14: 37.
  • Pollock, D.D., Zwickl, D.J., McGuire, J.A. & Hillis, D.M. (2002). Increased taxon sampling is advantageous for phylogenetic inference. Systematic Biology, 51: 664–671.
  • Rausch, H., Larsen, N. & Schmitt, R. (1989). Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons. Journal of Molecular Evolution, 29: 255–265.
  • Ronquist, F., Teslenko, M., Mark, P.V.D., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542.
  • Sachs, J.L. (2008). Resolving the first steps to multicellularity. Trends in Ecology and Evolution, 23: 245–248.
  • Smith, D.R. & Lee, R.W. (2008). Nucleotide diversity in the mitochondrial and nuclear compartments of Chlamydomonas reinhardtii: investigating the origins of genome architecture. BMC Evolutionary Biology, 8: 156.
  • Smith, D.R. & Lee, R.W. (2009). Nucleotide diversity of the Chlamydomonas reinhardtii plastid genome: addressing the mutational-hazard hypothesis. BMC Evolutionary Biology, 9: 120.
  • Smith, D.R. & Lee, R.W. (2010). Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis. Molecular Biology and Evolution, 27: 2244–2256.
  • Smith, D.R., Hamaji, T., Olson, B.J.S.C., Durand, P.M., Ferris, P., Michod, R.E., Featherston, J., Nozaki, H. & Keeling, P.J. (2013). Organelle genome complexity scales positively with organism size in volvocine green algae. Molecular Biology and Evolution, 30: 793–797.
  • Smith, S.A. & Dunn, C.W. (2008). Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics, 24: 715–716.
  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.
  • Umen, J.G. (2014). Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harbor Perspectives in Biology, 6: a016170.
  • Warburton, P.E., Giordano, J., Cheung, F., Gelfand, Y. & Benson, G. (2004). Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Research, 14: 1861–1869.
  • Wehr, J.D., Sheath, R.G. & Kociolek, J.P. (2015). Freshwater Algae of North America: Ecology and Classification. 2nd ed. Elsevier Press, New York.
  • Wortley, A.H., Rudall, P.J., Harris, D.J. & Scotland, R.W. (2005). How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Systematic Biology, 54: 697–709.
  • Xia, X. & Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity, 92: 371–373.
  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24: 1586–1591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.