1,729
Views
11
CrossRef citations to date
0
Altmetric
Articles

Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species

ORCID Icon, ORCID Icon, , , &

References

  • Abbott, I.A. (1989). Marine algae of the Northwest Hawaiian Islands. Pacific Science, 43: 223–233.
  • Abbott, I.A. (1992). Lā‘au: Traditional Hawaiian Uses of Plants. Bishop Museum Press, Honolulu. 176 pp.
  • Abbott, I.A. (1999). Marine Red Algae of the Hawaiian Islands. Bishop Museum Press, Honolulu.
  • Agardh, J.G. (1863). Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen secundum: algas florideas complectens. Part 2, fasc. 3. Lundae [Lund]: C.W.K. Gleerup. pp. 787–1138, 1158–1291.
  • Agegian, C.R. & Abbott, I.A. (1985). Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. Proceedings of the 5th International Coral Reef Congress, 5: 47–51.
  • Ballantine, D.L. & Ruiz, H. (2010). Two new deepwater Peyssonnelia species, Peyssonnelia iridescens and Peyssonnelia gigaspora (Peyssonneliaceae, Rhodophyta) from Puerto Rico, Caribbean Sea. Phycologia, 49: 537–544.
  • Ballantine, D.L., Ruiz Torres, H.R. & Aponte, N.E. (2016). The Mesophotic, Coral Reef-Associated, Marine Algal Flora of Puerto Rico, Caribbean Sea. Smithsonian Contributions to Botany Number 105. viii + 41 pp.
  • Bongaerts, P., Ridgway, T., Sampayo, E.M. & Hoegh-Guldberg, O. (2010). Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs, 29: 309–327.
  • Cianciola, E.N., Popolizio, T.R., Schneider, C.W. & Lane C.E. (2010). Using molecular-assisted alpha taxonomy to better understand red algal biodiversity in Bermuda. Diversity, 2: 946–958.
  • Doty, M.S., Gilbert, W.J. & Abbott, I.A. (1974). Hawaiian marine algae from seaward of the algal ridge. Phycologia, 13: 345–357.
  • Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5: 113.
  • Gavio, B. & Fredericq, S. (2002). Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. European Journal of Phycology, 37: 349–359.
  • Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org.
  • Hanisak, M.D. & Blair, S.M. (1988). The deep-water macroalgal community of the east Florida continental shelf (USA). Helgolander Meeresuntersuchungen, 42: 133–163.
  • Hinderstein, L.M., Marr, J.C.A., Martinez, F.A., Dowgiallo, M.J., Puglise, K.A., Pyle, R.L., Zawada, D.G. & Appeldoorn, R. (2010). Theme section on ‘Mesophotic Coral Ecosystems: Characterization, Ecology, and Management’. Coral Reefs, 29: 247–251.
  • Hurley, K.K.C., Timmers, M.A., Godwin, L.S., Copus, J.M., Skillings, D.J. & Toonen, R.J. (2016). An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O‘ahu, Hawai‘i. Coral Reefs, 35: 103–112.
  • Kahng, S.E. & Kelley, C. (2007). Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Au’au Channel, Hawai‘i. Coral Reefs, 2: 679–687.
  • Kang, J.C. & Kim, M.S. (2013). A novel species Symphyocladia glabra sp. nov. (Rhodomelaceae, Rhodophyta) from Korea based on morphological and molecular analyses. Algae, 28: 149–160.
  • Kang, J.C., Yang, M.Y., Lin, S.-M. & Kim, M.S. (2015). Reappraisal of nine species of Martensia (Delesseriaceae, Rhodophyta) reported from Korea based on morphology and molecular analyses. Botanica Marina, 58: 151–166.
  • Kim, M.S., Kim, S.Y. & Nelson, W. (2010). Symphyocladia lithophila sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbcL sequences. Botanica Marina, 53: 233–241.
  • Lane, C.E., Lindstrom, S.C. & Saunders, G.W. (2007). A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Molecular Phylogenetics and Evolution, 44: 634–648.
  • Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29: 1695–1701.
  • Lee, Y. (2004). Two new species of Martensia (Delesseriaceae, Rhodophyta) from Jeju Island, Korea. Phycological Research, 52: 255–265.
  • Lee, Y. (2006). The genus Martensia Hering (Delesseriaceae, Rhodophyta) with M. albida sp. nov. and M. flammifolia sp. nov on Jeju Island, Korea. Algae, 21: 15–48.
  • Lin, S.-M., Hommersand, M.H. & Fredericq, S. (2004). Two new species of Martensia (Delesseriaceae, Rhodophyta) from Kenting National Park, southern Taiwan. Phycologia, 43: 13–25.
  • Lin, S.-M., Hommersand, M.H., Fredericq, S. & De Clerck, O. (2009). Characterization of Martensia (Delesseriaceae, Rhodophyta) based on morphological and molecular study of the type species, M. elegans, and M. natalensis sp. nov. from South Africa. Journal of Phycology, 45: 678–691.
  • Lin, S.-M., Yang, W.-C., Huisman, J.M., De Clerck, O. & Lee, W.J. (2013). Molecular phylogeny of the widespread Martensia fragilis complex (Delesseriaceae, Rhodophyta) from the Indo-Pacific region reveals three new species of Martensia from Taiwan. European Journal of Phycology, 48: 173–187.
  • Littler, D.S. & Littler, M.M. (2003). South Pacific Reef Plants: A Diver’s Guide to the Plant Life of South Pacific Coral Reefs. OffShore Graphics, Washington, DC.
  • Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8. IEEE, New Orleans, Louisiana.
  • Pukui, M.K. & Elbert, S.H. (1986). Hawaiian Dictionary. University of Hawai‘i Press, Honolulu, Hawai‘i.
  • Rocha, L.A., Pinheiro, H.T., Shepherd, B., Papastamatiou, Y.P., Luiz, O.J., Pyle, R.L. & Bongaerts, P. (2018). Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science, 361: 281–284.
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542.
  • Rooney, J., Donham, E., Montgomery, A., Spalding, H., Parrish, F., Boland, R., Fenner, D., Gove, J. & Vetter, O. (2010). Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs, 29: 361–367.
  • Saunders, G.W. (2005). Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B: Biological Sciences, 360: 1879–1888.
  • Sherwood, A.R., Kurihara, A., Conklin, K.Y., Sauvage, T. & Presting, G.G. (2010a). The Hawaiian Rhodophyta Biodiversity Survey (2006–2010): a summary of principal findings. BMC Plant Biology, 10: 258.
  • Sherwood, A.R., Sauvage, T., Kurihara, A., Conklin, K.Y. & Presting, G.G. (2010b). A comparative analysis of COI, LSU and UPA marker data for the Hawaiian florideophyte Rhodophyta: implications for DNA barcoding of red algae. Cryptogamie, Algologie, 31: 451–465.
  • Spalding, H.L. (2012). Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the main Hawaiian Islands. PhD Thesis, University of Hawai’i, Honolulu.
  • Spalding, H.L., Conklin, K.Y., Smith, C.M., O’Kelly, C.J. & Sherwood, A.R. (2016). New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. Journal of Phycology, 52: 40–53.
  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.
  • Tenggardjaja, K.A., Bowen, B.W. & Bernardi, G. (2014). Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS ONE, 9: e115493.