685
Views
4
CrossRef citations to date
0
Altmetric
Articles

Helical and linear morphotypes of Arthrospira sp. PCC 8005 display genomic differences and respond differently to 60Co gamma irradiation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 129-146 | Received 27 Mar 2019, Accepted 08 Jul 2019, Published online: 21 Nov 2019

References

  • Abomohra, A.E., El-Shouny, W., Sharaf, M. & Abo-Eleneen, M. (2016). Effect of gamma radiation on growth and metabolic activities of Arthrospira platensis. Brazilian Archives of Biology and Technology, 59: e16150476.
  • Agarwal, R., Rane, S.S. & Sainis, J.K. (2008). Effects of (60)Co gamma radiation on thylakoid membrane functions in Anacystis nidulans. Journal of Photochemical Photobiology, 91: 9–19.
  • Ainas, M., Hasnaoui, S., Bouarab, R., Abdi, N., Drouiche, N. & Mameri, N. (2017). Hydrogen production with the cyanobacterium Spirulina platensis. International Journal of Hydrogen Energy, 42: 4902–4907.
  • Arguelles, J.C. (2000). Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Archives in Microbiology, 174: 217–224.
  • Badri, H., Monsieurs, P., Coninx, I., Nauts, R., Wattiez, R. & Leys, N. (2015a). Temporal gene expression of the cyanobacterium Arthrospira in response to gamma rays. PLoS ONE, 10: e0135565.
  • Badri, H., Monsieurs, P., Coninx, I., Wattiez, R. & Leys, N. (2015b). Molecular investigations of the radiation resistance of the edible cyanobacterium Arthrospira sp. PCC 8005. Microbiology Open, 4: 187–207.
  • Battista, J.R. (2016). Radiation tolerance. In eLS. Wiley, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0020365]
  • Beblo, K., Douki, T., Schmalz, G., Rachel, R., Wirth, R., Huber, H., Reitz, G. & Rettberg, P. (2011). Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Archives of Microbiology, 193: 797–809.
  • Belknap, W.R. & Haselkorn, R. (1987). Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena. EMBO Journal, 6: 871–884.
  • Benaroudj, N., Lee, D.H. & Goldberg, A.L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry, 276: 24261–24267.
  • Benzie, I.F.F. & Strain, J.J. (1999). Ferric reducing antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Oxidants and Antioxidants, Pt A, 299: 15–27.
  • Cameron, J.C. & Pakrasi, H.B. (2010). Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiology, 154: 1672–1685.
  • Carrieri, D., Momot, D., Brasg, I.A., Ananyev, G., Lenz, O., Bryant, D.A. & Dismukes, G.C. (2010). Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria. Applied and Environmental Microbiology, 76: 6455–6462.
  • Carvalho, A.L., Cardoso, F.S., Bohn, A., Neves, A.R. & Santos, H. (2011). Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Applied and Environmental Microbiology, 77: 4189–4199.
  • Chaiyasitdhi, A., Miphonpanyatawichok, W., Riehle, M.O., Phatthanakun, R., Surareungchai, W., Kundhikanjana, W. & Kuntanawat, P. (2018). The biomechanical role of overall-shape transformation in a primitive multicellular organism: a case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis. PLoS ONE, 13: e0196383.
  • Chen, B. & Zhou, X.C. (2003). Protective effect of natural dietary antioxidants on space radiation-induced damages. Space Medicine & Medical Engineering (Beijing), 16: 514–518.
  • Cheng, J., Lu, H.X., Li, K., Zhu, Y.X. & Zhou, J.H. (2018). Enhancing growth-relevant metabolic pathways of Arthrospira platensis (CYA-1) with gamma irradiation from 60Co. Royal Society of Chemistry Advances, 8: 16824–16833.
  • Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47: 551–578.
  • Cingolani, P., Platts, A., Wang Le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X. & Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6: 80–92.
  • Cogne, G., Lehmann, B., Dussap, C.-G., & Gros, J.-B. (2003). Uptake of macrominerals and trace elements by the cyanobacterium spirulina platensis (Arthrospira platensis PCC 8005) under photoautotrophic conditions: Culture medium optimization. Biotechnology and Bioengineering, 81: 588–593.
  • Confalonieri, F. & Sommer, S. (2011). Bacterial and archaeal resistance to ionizing radiation. Journal of Physics: Conference Series, 261: 012005.
  • Cox, M.M. & Battista, J.R. (2005). Deinococcus radiodurans – the consummate survivor. Nature Reviews Microbiology, 3: 882–892.
  • Domonkos, I., Kis, M., Gombos, Z. & Ughy, B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research, 52: 539–561.
  • Elbein, A.D., Pan, Y.T., Pastuszak, I. & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13: 17R–27R.
  • Ezraty, B., Gennaris, A., Barras, F. & Collet, J.F. (2017). Oxidative stress, protein damage and repair in bacteria. Nature Reviews in Microbiology, 15: 385–396.
  • Fahey, R.C. (2013). Glutathione analogs in prokaryotes. Biochimica et Biophysica Acta, 1830: 3182–3198.
  • Fernandez, A.F., Ooms, H., Brichard, B., Coeck, M., Coenen, S., Berghmans, F. & Decreton, M. (2002). SCK•CEN gamma irradiation facilities for radiation tolerance assessment. 2002 IEEE Radiation Effects Data Workshop, Workshop Record, pp. 171–176.
  • Furmaniak, M.A., Misztak, A.E., Franczuk, M.D., Wilmotte, A., Waleron, M. & Waleron, K.F. (2017). Edible cyanobacterial genus Arthrospira: actual state of the art in cultivation methods, genetics, and application in medicine. Frontiers in Microbiology, 8: 2541.
  • Gao, K.S., Li, P., Watanabe, T.R. & Helbling, E.W. (2008). Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). Journal of Phycology, 44: 777–786.
  • Hayat, M.A. (1981). Principles and Techniques of Electron Microscopy: Volume I, Biological Applications. 2nd ed. Edward Arnold, London.
  • Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F., Morin, N., Wilmotte, A., Janssen, P. & Mergeay, M. (2006). Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Research in Microbiology, 157: 77–86.
  • Hongsthong, A., Sirijuntarut, M., Prommeenate, P., Thammathorn, S., Bunnag, B., Cheevadhanarak, S. & Tanticharoen, M. (2007). Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by proteomic analysis. Molecular Biotechnology, 36: 123–130.
  • Hossain, M.F., Ratnayake, R.R., Meerajini, K. & Kumara, K.L.W. (2016). Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Science and Nutrition, 4: 753–758.
  • Hosseini, S.M., Khosravi-Darani, K. & Mozafari, M.R. (2013). Nutritional and medical applications of spirulina microalgae. Mini-Reviews in Medicinal Chemistry, 13: 1231–1237.
  • Hu, X.Y., Ouyang, J., Liu, G.C., Gao, M.J., Song, L.B., Zang, J. & Chen, W. (2018). Synthesis and characterization of the conducting polymer micro-helix based on the Spirulina template. Polymers, 10: Article 882.
  • Imlay, J.A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews Microbiology, 11: 443–454.
  • Jain, N.K. & Roy, I. (2009). Effect of trehalose on protein structure. Protein Science, 18: 24–36.
  • Janssen, P.J., Morin, N., Mergeay, M., Leroy, B., Wattiez, R., Vallaeys, T., Waleron, K., Waleron, M., Wilmotte, A., Quillardet, P., De Marsac, N.T., Talla, E., Zhang, C.C. & Leys, N. (2010). Genome sequence of the edible cyanobacterium Arthrospira sp. PCC 8005. Journal of Bacteriology, 192: 2465–2466.
  • Jeeji Bai, N. (1985). Competitive exclusion or morphological transformation? A case study with Spirulina fusiformis. Archiv für Hydrobiologie, Suppl. 71/1, Algological Studies, 38–39: 191–199.
  • Jeeji Bai, N. & Seshadri, C.V. (1980). On coiling and uncoiling of trichomes in the genus Spirulina. Archiv für Hydrobiologie, Suppl. 60/1, Algological Studies, 26: 32–47.
  • Ji, C., Han, J., Zhang, J., Hu, J., Fu, Y., Qi, H., Sun, Y. & Yu, C. (2018). Omics-prediction of bioactive peptides from the edible cyanobacterium Arthrospira platensis proteome. Journal of the Science of Food and Agriculture, 98: 984–990.
  • Jung, K.W., Lim, S. & Bahn, Y.S. (2017). Microbial radiation-resistance mechanisms. Journal of Microbiology, 55: 499–507.
  • Kamata, K., Piao, Z., Suzuki, S., Fujimori, T., Tajiri, W., Nagai, K., Iyoda, T., Yamada, A., Hayakawa, T., Ishiwara, M., Horaguchi, S., Belay, A., Tanaka, T., Takano, K. & Hangyo, M. (2014). Spirulina-templated metal microcoils with controlled helical structures for THz electromagnetic responses. Nature Scientific Reports, 4: 4919.
  • Karkos, P.D., Leong, S.C., Karkos, C.D., Sivaji, N. & Assimakopoulos, D.A. (2011). Spirulina in clinical practice: evidence-based human applications. Evidence-Based Complementary and Alternative Medicine, 2011: 531053.
  • Kerchev, P. & Ivanov, S. (2008). Influence of extraction techniques and solvents on the antioxidant capacity of plant material. Biotechnology and Biotechnological Equipment, 22: 556–559.
  • Klähn, S. & Hagemann, M. (2011). Compatible solute biosynthesis in cyanobacteria. Environmental Microbiology, 13: 551–562.
  • Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J.R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia, 86: 295–335.
  • Kumar, S.K., Dahms, H.-U., Won, E.-J., Lee, J.-S. & Shin, K.-H. (2015). Microalgae – a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113: 329–352.
  • Lee, Y., Yang, T.-M. & Hsu, J.-H. (2015). A comparison of the growth characteristics of Arthrospira platensis in deep ocean water, surface ocean water, and artificial ocean water. Open Access Library Journal, 2: e1984.
  • Lewin, R.A. (1980). Uncoiled variants of Spirulina platensis (Cyanophyceae: Oscillatoriaceae). Algological Studies/Archiv für Hydrobiologie, 60: 48–52.
  • Li, H. & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26: 589–595.
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25: 2078–2079.
  • Lin, C.-C., Wei, C.-H., Chen, C.-I., Shieh, C.-J. & Liu, Y.-C. (2013). Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresource Technology, 135: 640–643.
  • Liu, T., Zhu, L., Zhang, Z., Huang, H., Zhang, Z. & Jiang, L. (2017). Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Scientific Reports, 7: 17586.
  • Menezes, A.A., Cumbers, J., Hogan J.A. & Arkin A.P. (2015). Towards synthetic biological approaches to resource utilization on space missions. Journal of the Royal Society Interface, 12: 20140715.
  • Miklaszewska M., Waleron M., Morin N., Całusinska M., Wilmotte A., Tandeau De Marsac N., Ripka, R. & Waleron, K. (2012). Elucidation of the gas vesicle gene clusters in cyanobacteria of the genus Arthrospira (Oscillatoriales, Cyanophyta) and correlation with ITS phylogeny. European Journal of Phycology, 47: 233–244.
  • Morin, N., Vallaeys, T., Hendrickx, L., Natalie, L. & Wilmotte, A. (2010). An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. Journal of Microbiological Methods, 80: 148–154.
  • Motham, M., Peerapornpisal, Y., Tongsriri, S., Pumas, C. & Vacharapiyasophon, P. (2012). High subzero temperature preservation of Spirulina platensis (Arthrospira fusiformis) and its ultrastructure. Chiang Mai Journal of Science, 39: 554–561.
  • Moussa, H.R., Ismaiel, M.M.S., Shabana, E.F., Gabr, M.A. & El-Shaer, E.A. (2015). The role of gamma irradiation on growth and some metabolic activities of Spirulina platensis. Journal of Nuclear Technology in Applied Science, 3: 99–107.
  • Mühling, M., Harris, N., Belay, A. & Whitton, B.A. (2003). Reversal of helix orientation in the cyanobacterium Arthrospira. Journal of Phycology, 39: 360–367.
  • Mühling, M., Somerfield, P.J., Harris, N., Belay, A. & Whitton, B.A. (2006). Phenotypic analysis of Arthrospira (Spirulina) strains (cyanobacteria). Phycologia, 45: 148–157.
  • Narainsamy, K., Farci, S., Braun, E., Junot, C., Cassier-Chauvat, C. & Chauvat, F. (2016). Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate. Molecular Microbiology, 100: 15–24.
  • Nomsawai, P., De Marsac, N.T., Thomas, J.C., Tanticharoen, M. & Cheevadhanarak, S. (1999). Light regulation of phycobilisome structure and gene expression in Spirulina platensis C1 (Arthrospira sp. PCC 9438). Plant and Cell Physiology, 40: 1194–1202.
  • Nowicka-Krawczyk, P., Mühlsteinová, R. & Hauer, T. (2019). Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports, 9.
  • Ohmori, K., Ehira, S., Kimura, S. & Ohmori, M. (2009). Changes in the amount of cellular trehalose, the activity of maltooligosyl trehalose hydrolase, and the expression of its gene in response to salt stress in the cyanobacterium Spirulina platensis. Microbes and Environments, 24: 52–56.
  • Olsson-Francis, K. & Cockell, C.S. (2010). Use of cyanobacteria for in-situ resource use in space applications. Planetary and Space Science, 58: 1279–1285.
  • Ovando, C.A., Carvalho, J.C.D., Vinícius De Melo Pereira, G., Jacques, P., Soccol, V.T. & Soccol, C.R. (2018). Functional properties and health benefits of bioactive peptides derived from Spirulina: a review. Food Reviews International, 34: 34–51.
  • Pavlopoulou, A., Savva, G.D., Louka, M., Bagos, P.G., Vorgias, C.E., Michalopoulos, I. & Georgakilas, A.G. (2016). Unraveling the mechanisms of extreme radioresistance in prokaryotes: lessons from nature. Mutation Research – Reviews in Mutation Research, 767: 92–107.
  • Peñarrieta, J.M., Alvarado, J.A., Akesson, B. & Bergenståhl, B. (2008). Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): an Andean pseudocereal. Molecular Nutrition and Food Research, 52: 708–717.
  • Rahman, M.A., Aziz, M.A., Al-Khulaidi, R.A., Sakib, N. & Islam, M. (2017). Biodiesel production from microalgae Spirulina maxima by two step process: optimization of process variable. Journal of Radiation Research and Applied Sciences, 10: 140–147.
  • Reina-Bueno, M., Argandoña, M., Nieto, J.J., Hidalgo-García, A., Iglesias-Guerra, F., Delgado, M.J. & Vargas, C. (2012a). Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiology, 12: 207.
  • Reina-Bueno, M., Argandoña, M., Salvador, M., Rodriguez-Moya, J., Iglesias-Guerra, F., Csonka, L.N., Nieto, J.J. & Vargas, C. (2012b). Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS ONE, 7: e33587.
  • Reisz, J.A., Bansal, N., Qian, J., Zhao, W. & Furdui, C.M. (2014). Effects of ionizing radiation on biological molecules – mechanisms of damage and emerging methods of detection. Antioxidants and Redox Signaling, 21: 260–292.
  • Riley, P.A. (1994). Free-radicals in biology – oxidative stress and the effects of ionizing-radiation. International Journal of Radiation Biology, 65: 27–33.
  • Sadovsky, D., Brenner, A., Astrachan, B., Asaf, B. & Gonen, R. (2016). Biosorption potential of cerium ions using Spirulina biomass. Journal of Rare Earths, 34: 644–652.
  • Saini, D.K., Pabbi, S. & Shukla, P. (2018). Cyanobacterial pigments: perspectives and biotechnological approaches. Food & Chemical Toxicology, 120: 616–624.
  • Shabana, E.F., Gabr, M.A., Moussa, H.R., El-Shaer, E.A. & Ismaiel, M.M.S. (2017). Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chemistry, 214: 550–555.
  • Shiraishi, H. (2016). Cryopreservation of the edible alkalophilic cyanobacterium Arthrospira platensis. Bioscience Biotechnology & Biochemistry, 80: 2051–2057.
  • Shuryak, I., Matrosov, V.Y., Gaidamakova, E.K., Tkavc, R., Grichenko, O., Klimenkova, P., Volpe, R.P. & Daly, M.J. (2017). Microbial cells can cooperate to resist high-level chronic ionizing radiation. PLoS ONE, 12: e0189261.
  • Sili, C., Torzillo, G. & Vonshak, A. (2012). Arthrospira (Spirulina). In Ecology of Cyanobacteria II: Their Diversity in Space and Time (Whitton, B.A., editor), 677–705. Springer, Dordrecht.
  • Singh, H. (2018). Desiccation and radiation stress tolerance in cyanobacteria. Journal of Basic Microbiology, 58: 813–826.
  • Smirnova, G.V. & Oktyabrsky, O.N. (2005). Glutathione in bacteria. Biochemistry (Moscow), 70: 1199–1211.
  • Sotiroudis, T.G. & Sotiroudis, G.T. (2013). Health aspects of Spirulina (Arthrospira) microalga food supplement. Journal of the Serbian Chemical Society, 78: 395–405.
  • Spurr, A.R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26: 31–43.
  • Tomaselli, L. (1997). Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology (Vonshak, A., editor), 1–15. Taylor & Francis, London.
  • Tomaselli, L., Palandri, M.R. & Tani, G. (1993). Advances in preparative techniques for observation of the fine structure of Arthrospira maxima Setch. et Gardner (syn. Spirulina maxima Geitler). Algological Studies/Archiv für Hydrobiologie, Supplement 71: 43–55.
  • Van Der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K.V., Altshuler, D., Gabriel, S. & Depristo, M.A. (2013). From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics, 43: 11.10.1 11–11.10.33.
  • Van Eykelenburg, C. (1979). The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie van Leeuwenhoek, 45: 369–390.
  • Van Eykelenburg, C. (1980). Ecophysiological studies on Spirulina platensis: effect of temperature, light intensity and nitrate concentration on growth and ultrastructure. Antonie Van Leeuwenhoek, 46: 113–127.
  • Vanhoudt, N., Vandenhove, H., Leys, N. & Janssen, P. (2018). Potential of higher plants, algae, and cyanobacteria for remediation of radioactively contaminated waters. Chemosphere, 207: 239–254.
  • Verseux, C., Baqué, M., Lehto, K., De Vera, J.-P.P., Rothschild, L.J. & Billi, D. (2016). Sustainable life support on Mars – the potential roles of cyanobacteria. International Journal of Astrobiology, 15: 65–92.
  • Walter, J.M., Coutinho, F.H., Dutilh, B.E., Swings, J., Thompson, F.L. & Thompson, C.C. (2017). Ecogenomics and taxonomy of cyanobacteria phylum. Frontiers in Microbiology, 8: Article 2132.
  • Wang, T.H., Kang, L., Li, J.H., Wu, W.J., Zhang, P.R., Gong, M.H., Lai, W.H., Zhang, C.Y., Chang, L., Peng, Y., Yang, Z.Z., Li, L., Bao, Y.Y., Xu, H.W., Zhang, X.H., Sui, Z.H., Yang, G.P. & Wang, X.H. (2015). Floating Escherichia coli by expressing cyanobacterial gas vesicle genes. Journal of Ocean University of China, 14: 84–88.
  • Wang, X., Cai, J., Sun, L., Zhang, S., Gong, D., Li, X., Yue, S., Feng, L. & Zhang, D. (2019). Facile fabrication of magnetic microrobots based on Spirulina templates for targeted delivery and synergistic chemo-photothermal therapy. ACS Applied Materials & Interfaces, 11: 4745–4756.
  • Wang, Z., Xu, B., Zhao, X., Jiang, J. & Chen, S. (1998). The effect of gamma-irradiation on different strains and morphological filaments of Spirulina. Acta Agriculturae Universitatis Zhejiangensis, 24: 121–125.
  • Wang, Z.P. & Zhao, Y. (2005). Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): from linear to helical. Journal of Phycology, 41: 622–628.
  • Webb, K.M. & Diruggiero, J. (2012). Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea, 2012: 845756.
  • Wu, H.Y., Gao, K.S., Villafane, V.E., Watanabe, T. & Helbling, E.W. (2005). Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Applied and Environmental Microbiology, 71: 5004–5013.
  • Wu, Q.H., Liu, L., Miron, A., Klimová, B., Wan, D. & Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90: 1817–1840.
  • Yu, L.Z.-H., Luo, X.-S., Liu, M. & Huang, Q. (2013). Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert. Journal of Basic Microbiology, 55: 135–140.
  • Zhang, HQ., Lin, AP., Sun, Y. & Deng, YM. 2001. Chemo- and radio-protective effects of polysaccharide of Spirulina platensis on hemopoietic system of mice and dogs. Acta Pharmacologica Sinica, 22: 1121–1124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.