1,051
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Genetic structure of amphi-Atlantic Laminaria digitata (Laminariales, Phaeophyceae) reveals a unique range-edge gene pool and suggests post-glacial colonization of the NW Atlantic

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 517-528 | Received 14 Nov 2019, Accepted 29 Mar 2020, Published online: 01 Jun 2020

References

  • Adey, W.H. & Hayek, L.C. (2011). Elucidating marine biogeography with macrophytes: quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct subarctic region in the Northwestern Atlantic. Northeastern Naturalist, 18: 1–128.
  • Assis, J., Araújo, M.B. & Serrão, E.A. (2018b). Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 24: e55–e66.
  • Assis, J., Coelho, N.C., Lamy, T., Valero, M., Alberto, F. & Serrão, E.A. (2016a). Deep reefs are climatic refugia for genetic diversity of marine forests. Journal of Biogeography, 43: 833–844.
  • Assis, J., Lucas, A.V., Bárbara, I. & Serrão, E.A. (2016b). Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Marine Environmental Research, 113: 174–182.
  • Assis, J., Serrão, E.A., Claro, B., Perrin, C. & Pearson, G.A. (2014). Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Molecular Ecology, 23: 2797–2810.
  • Assis, J., Serrão, E.A., Coelho, N.C., Tempera, F., Valero, M. & Alberto, F. (2018a). Past climate changes and strong oceanographic barriers structured low‐latitude genetic relics for the golden kelp Laminaria ochroleuca. Journal of Biogeography, 45: 2326–2336.
  • Bermejo, R., Chefaoui, R.M., Engelen, A.H., Buonomo, R., Neiva, J., Ferreira-Costa, J., Pearson, G.A., Marbà, N., Duarte, C.M., Airoldi, L., Hernández, I., Guiry, M.D. & Serrão, E.A. (2018). Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. Scientific Reports, 8: 10427.
  • Billot, C., Engel, C.R., Rousvoal, S. Kloareg, B. & Valero, M. (2003). Current patterns, habitat discontinuities and population genetic structure: the case of the kelp Laminaria digitata in the English Channel. Marine Ecology Progress Series, 253: 111–121.
  • Billot, C., Rousvoal, S., Estoup, A., Epplen, J.T., Saumitou-Laprade, P., Valero, M. & Kloareg, B. (1998). Isolation and characterization of microsatellite markers in the nuclear genome of the brown alga Laminaria digitata (Phaeophyceae). Molecular Ecology, 7: 1778–1780.
  • Brawley, S.H., Coyer, J.A., Blakeslee, A.M.H., Hoarau, G., Johnson, L.E., Byers, J.E., Stam, W.T. & Olsen, J.L. (2009). Historical invasions of the intertidal zone of Atlantic North America associated with distinctive patterns of trade and emigration. Proceedings of the National Academy of Sciences USA, 106: 8239–8244.
  • Brennan, G., Kregting, L., Beatty, G.E., Cole, C., Elsäßer, B., Savidge, G. & Provan, J. (2014). Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach. Journal of the Royal Society, Interface, 11: 20140197.
  • Bringloe, T.T. & Saunders, G.W. (2018). Mitochondrial DNA sequence data reveal the origins of postglacial marine macroalgal flora in the Northwest Atlantic. Marine Ecology Progress Series, 589: 45–58.
  • Brochmann, C., Gabrielsen, T.M., Nordal, I., Landvik, J.Y. & Elven, R. (2003). Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon, 52: 417–450.
  • Carlson, A.E. & Winsor, K. (2012). Northern hemisphere ice-sheet responses to past climate warming. Nature Geoscience, 5: 607–613.
  • Coelho, N.C., Serrão, E.A. & Alberto, F. (2014). Characterization of fifteen microsatellite markers for the kelp Laminaria ochroleuca and cross species amplification within the genus. Conservation Genetics Resources, 6: 949–950.
  • Coyer, J.A., Hoarau, G., Van Schaik, J., Luijckx, P. & Olsen, J.L. (2011). Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic. Journal of Biogeography, 38: 756–771.
  • Engelen, A.H., Lévèque, L., Destombe, C. & Valero, M. (2011). Spatial and temporal patterns of recovery of low intertidal Laminaria digitata after experimental spring. Cahiers de Biologie Marine, 52: 441–453.
  • Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611–2620.
  • Fauvelot, A.C., Bernardi, G. & Planes, S. (2008). Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from holocene sea-level change. Evolution, 57: 1571–1583.
  • Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K.M. & Pederson, M.F. (2019). Arctic kelp forests: diversity, resilience and future. Global and Planetary Change, 172: 1–14.
  • Fraser, C.I., Thiel, M., Spencer, H.G. & Waters, J.M. (2010). Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evolutionary Biology, 10: 203.
  • Gallon, R.K., Robuchon, M., Leroy, B. Le Gall, L., Valero, M., & Feunteun, E. (2014). Twenty years of observed and predicted changes in subtidal red seaweed assemblages along a biogeographical transition zone: inferring potential causes from environmental data. Journal of Biogeography, 41: 2293–2306.
  • Gómez, A., Hughes, R.N., Wright, P.J., Carvalho, G.R. & Lunt, D.H. (2007). Mitochondrial DNA phylogeography and mating compatibility reveal marked genetic structuring and speciation in the NE Atlantic bryozoan Celleporella hyalina. Molecular Ecology, 16: 2173–2188.
  • Graham, M.H., Dayton, P.K. & Erlandson, J.M. (2003). Ice ages and ecological transitions on temperate coasts. Trends in Ecology & Evolution, 18: 33–40.
  • Hoarau, G., Coyer, J.A., Veldsink, J.H., Stam, W.T. & Olsen, J.L. (2007). Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Molecular Ecology, 16: 3606–16.
  • Hop, H., Wiencke, C., Barbara, V. & Kovaltchouk, N.A. (2012). Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Botanica Marina, 55: 399–414.
  • Hubbard, A., Sugden, D., Dugmore, A., Norddahl, H. & Pétursson, H.G. (2006). A modelling insight into the Icelandic Last Glacial Maximum ice sheet. Quaternary Science Reviews, 25: 2283–2296.
  • Ingólfsson, A. (2009). A marine refugium in Iceland during the last glacial maximum: fact or fiction? Zoologica Scripta, 38: 663–665.
  • Jombart, T., Lyon, D. & Biome, L. De. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403–1405.
  • Kain, J.M. & Jones, N.S. (1975). Algal recolonization of some cleared subtidal areas. Journal of Ecology, 63: 739–765.
  • Keenan, K., Mcginnity, P., Cross, T.F., Crozier, W.W., & Prodöhl, P.A. (2013). Diversity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 4: 782–788.
  • King, N.G., Mckeown, N.J., Smale, D.A., Wilcockson, D.C., Hoelters, L., Groves, E.A., Stamp, T. & Moore, P.J. (2019). Evidence for different thermal ecotypes in range centre and trailing edge kelp populations. Journal of Experimental Marine Biology and Ecology, 514515: 10–17.
  • Krause-Jensen, D., Marbà, N., Olesen, B., Sejr, M.K., Christensen, P.B., Rodrigues, J., Renaud, P.E., Balsby, T.J.S. & Rysgaard, S. (2012). Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biology, 18: 2981–2994.
  • Li, J.-J., Hu, Z.-M. & Duan, D.-L. (2015). Genetic data from the red alga Palmaria palmata reveal a mid-Pleistocene deep genetic split in the North Atlantic. Journal of Biogeography, 42: 902–913.
  • Li, J.-J., Hu, Z.-M. & Duan, D.-L. (2016). Survival in glacial refugia versus postglacial dispersal in the North Atlantic: The cases of red seaweeds. Pp. 309–330 in: Seaweed Phylogeography - Adaptation and Evolution of Seaweeds under Environmental Change.
  • Longtin, C.M. & Saunders, G.W. (2015). On the utility of mucilage ducts as a taxonomic character in Laminaria and Saccharina (Phaeophyceae) – the conundrum of S. groenlandica. Phycologia, 54: 440–450.
  • Lourenço, C.R., Zardi, G.I., McQuaid, C.D., Serrão, E.A., Pearson, G.A. & Nicastro, K.R. (2016). Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. Journal of Biogeography, 43: 1595–1607.
  • Lüning, K. (1979). Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Marine Ecology Progress Series, 1: 195–207.
  • Lüning, K. (1990). Seaweeds: Their Environment, Biogeography, and Ecophysiology. Revised Ed. Wiley, New York. 527 pp.
  • Luttikhuizen, P.C., Heuvel, F.H.M. Van Den, Rebours, C., Witte, H.J., Bleijswijk, J.D.L. Van & Timmermans, K. (2018). Strong population structure but no equilibrium yet: genetic connectivity and phylogeography in the kelp Saccharina latissima (Laminariales, Phaeophyta). Ecology and Evolution, 8: 4265–4277.
  • Maggs, C.A., Castilho, R., Foltz, D., Henzler, C., Jolly, M.T., Kelly, J., Olsen, J., Perez, K.E., Stam, W., Väinölä, R., Viard, F. & Wares, J. (2008). Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology, 89: S108–S122.
  • Mauger, S., Couceiro, L. & Valero, M. (2012). A simple and cost-effective method to synthesize an internal size standard amenable to use with a 5-dye system. Prime Research on Biotechnology, 2: 40–46.
  • McDevit, D.C. & Saunders, G.W. (2010). A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia, 49: 235–248.
  • Merzouk, A. & Johnson, L.E. (2011). Kelp distribution in the northwest Atlantic Ocean under a changing climate. Journal of Experimental Marine Biology and Ecology, 400: 90–98. Elsevier B.V.
  • Neiva, J., Assis, J., Fernandes, F., Pearson, G.A. & Serrão, E.A. (2014). Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. Journal of Biogeography, 41: 1137–1148.
  • Neiva, J., Paulino, C., Nielsen, M.M., Krause-Jensen, D., Saunders, G.W., Assis, J., Bárbara, I., Tamigneaux, É., Gouveia, L., Aires, T., Marbà, N., Bruhn, A., Pearson, G.A. & Serrão, E.A. (2018). Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Scientific Reports, 8: 1112.
  • Neiva, J., Pearson, G.A., Valero, M. & Serrão, E.A. (2012). Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evolutionary Biology, 12: 78.
  • Neiva, J., Serrão, E.A., Assis, J., Pearson, G.A., Coyer, J.A., Olsen, J.L., Hoarau, G. & Valero, M. (2016). Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In Seaweed Phylogeography – Adaptation and Evolution of Seaweeds under Environmental Change (Hu, Z.-M. & Fraser, C., editors), 279–308. Springer, Dordrecht.
  • Nicastro, K.R., Assis, J., Serrão, E.A., Pearson, G.A., Neiva, J., Valero, M., Jacinto, R. & Zardi, G.I. (2020). Congruence between fine-scale genetic breaks and dispersal potential in an estuarine seaweed across multiple transition zones. ICES Journal of Marine Science, 77: 371–378.
  • Olsen, J.L., Zechman, F.W., Hoarau, G., Coyer, J., Stam, W., Valero, M. & Åberg, P. (2010). The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal “marine tree” and survivor of more than one glacial-interglacial cycle. Journal of Biogeography, 37: 842–856.
  • Oppliger, L.V., von Dassow, P., Bouchemousse, S., Robuchon, M., Valero, M., Correa, J.A., Mauger, S. & Destombe, C. (2014). Alteration of sexual reproduction and genetic diversity in the kelp species Laminaria digitata at the southern limit of its range. PLoS ONE, 9: e102518.
  • Petit, R.J., Aguinagalde, I., Beaulieu, J.-L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Fineschi, S., Grivet, D., Lascoux, M., Mohanty, A., Müller-Starck, G., Demesure-Musch, B., Palmé, A., Martín, J.P., Rendell, S., & Vendramin, G.G. (2003). Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300: 1563–1565.
  • Piry, S., Luikart, G. & Cornuet, J.-M. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90: 502–503.
  • Provan, J. & Maggs, C. A. (2012). Unique genetic variation at a species’ rear edge is under threat from global climate change. Proceedings of the Royal Society B, Biological Sciences, 279: 39–47.
  • Provan, J., Wattier, R.A. & Maggs, C.A. (2005). Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Molecular Ecology, 14: 793–803.
  • Raybaud, V., Beaugrand, G., Goberville, E., Delebecq, G., Destombe, C., Valero, M., Davoult, D., Morin, P. & Gevaert, F. (2013). Decline in kelp in West Europe and climate. PLoS ONE, 8: e66044.
  • Robuchon, M., Le Gall, L., Mauger, S. & Valero, M. (2014). Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Molecular Ecology, 23: 2669–2685.
  • Schoenrock, K.M., Callaghan, T.O., Callaghan, R.O. & Krueger-Hadfield, S.A. (2019). First record of Laminaria ochroleuca Bachelot de la Pylaie in Ireland in Béal an Mhuirthead, county Mayo. Marine Biodiversity Records, 12: 9.
  • Sharp, G., Allard, M. & Lewis, A. (2008). The potential for seaweed resource development in subarctic Canada; Nunavik, Ungava Bay. Journal of Applied Phycology, 20: 491–498.
  • Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A. & Robertson, J. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57: 573–583.
  • Toonen, R.J., & Hughes, S. (2001). Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. BioTechniques, 3: 1320–1324.
  • Valero, M., Destombe, C., Mauger, S., Ribout, C., Engel, C.R., Daguin-thiebaut, C. & Tellier, F. (2011). Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cahiers de Biologie Marine, 52: 467–483.
  • Vermeij, G.J. (1991). Anatomy of an invasion: the trans arctic interchange. Paleobiology, 17: 281–307.
  • Waltari, E. & Hickerson, M.J. (2013). Late Pleistocene species distribution modelling of North Atlantic intertidal invertebrates. Journal of Biogeography, 40: 249–260.
  • Wares, J.P. & Cunningham, C.W. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 55: 2455–2469.
  • Wilson, K.L., Skinner, M.A. & Lotze, H.K. (2019). Projected 21st‐century distribution of canopy‐forming seaweeds in the Northwest Atlantic with climate change. Diversity and Distributions, 25: 582–602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.