928
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Characterization of a high lipid-producing thermotolerant marine photosynthetic pico alga from genus Picochlorum (Trebouxiophyceae)

, , , ORCID Icon, , , , , & ORCID Icon show all
Pages 384-399 | Received 26 Jun 2019, Accepted 17 Feb 2020, Published online: 11 Aug 2020

References

  • Andersen, R.A., Pottert, D. & Bailey, J.C. (2002). Pinguiococcus pyrenoidosus gen. et sp. nov. (Pinguiophyceae), a new marine coccoid alga. Phycological Research, 50: 57–65.
  • Babić, I., Petrić, I., Bosak, S., Mihanović, H., Dupčić Radić, I. & Ljubešić, Z. (2017). Distribution and diversity of marine picocyanobacteria community: targeting of Prochlorococcus ecotypes in winter conditions (southern Adriatic Sea). Marine Genomics, 36: 3–11.
  • Barcytė, D., Hodač, L., & Nedbalová, L. (2017). Lunachloris lukesovae gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid green alga isolated from soil in South Bohemia, Czech Republic. European Journal of Phycology, 52: 281–291.
  • Barlow, R.G., Mantoura, R.F.C., Cummings, D.G. & Fileman, T.W. (1997). Pigment chemotaxonomic distributions of phytoplankton during summer in the western Mediterranean. Deep Sea Research Part 2, 44: 833–850.
  • Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37: 911–917.
  • Bock, C., Krienitz, L. & Pröschold, T. (2011). Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea, 11: 293–312.
  • Bork, P., Bowler, C., de Vargas, C., Gorsky, G., Karsenti, E. & Wincker, P. (2015). Tara Oceans studies plankton at planetary scale. Introduction. Science 348(6237): 873.
  • Bosak, S., Bošnjak, I., Cetinić, I., Mejdandžić, M. & Ljubešić, Z. (2016). Diatom community in the depths of the South Adriatic: an injection of carbon by biological pump. In 41st CIESM Congress.
  • Bourguet, N., Goutx, M., Ghiglione, J.F., Pujo-Pay, M., Mevel, G., Momzikoff, A., Mousseau, L., Guigue, C., Garcia, N., Raimbault, P., Pete, R., Oriol, L. & Lefevre, D. (2009). Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the DYFAMED site, NW Mediterranean. Deep-Sea Research Part II, 56: 1454–1469.
  • Chrétiennot-Dinet, M.J., Courties, C., Vaquer, A., Neveux, J., Claustre, H., Lautier, J. & Machado, M.C. (1995). A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia, 34: 285–292.
  • Claustre, H., Sciandra, A. & Vaulot, D. (2008). Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program. Biogeosciences Discussion, 5: 605–640.
  • Coles, J.F. & Jones, R.C. (2000). Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. Journal of Phycology, 36: 7–16.
  • Dahlin, L.R., Gerritsen, A.T., Henard, C.A., Van Wychen, S., Linger, J.G., Kunde, Y., Hovde, B.T., Starkenburg, S.R., Posewitz, M.C. & Guarnieri, M.T. (2019). Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo. Communications Biology, 2: 1–9.
  • Dahmen, I., Chtourou, H., Jebali, A., Daassi, D., Karray, F., Hassairi, I., Sayadi, S., Abdelkafi, S. & Dhouib, A. (2014). Optimisation of the critical medium components for better growth of Picochlorum sp. and the role of stressful environments for higher lipid production. Journal of the Science of Food and Agriculture, 94: 1628–1638.
  • de la Vega, M., Diaz, E., Vila, M. & León, R. (2011). Isolation of a new strain of Picochlorum sp. and characterization of its potential biotechnological applications. Biotechnology Progress, 27: 1535–1543.
  • de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horák, A., Jaillon, O., Lima-Mendez, G., Lukeš, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Tara Oceans Coordinators, Acinas, S.G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M.E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P. & Karsenti, E. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348: 1261605.
  • Decelle, J., Romac, S., Stern, R.F., Bendif, E.M., Zingone, A., Audic, S., Guiry, M.D., Guillou, L., Tessier, D., Le Gall, F., Gourvill, P., Dos Santos, A.L., Probert, I., Vaulot, D., de Vargas, C. & Christen, R. (2015). PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molecular Ecology Resources, 15: 1435–1445.
  • Dı́ez, B., Pedrós-Alió, C. & Massana, R. (2001). Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 67: 2932–2941.
  • Duarte, C.M. (2015). Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnology and Oceanography Bulletin, 24: 11–14.
  • Ettl, H. & Gärtner, G. (2014). Syllabus der boden-, luft-und flechtenalgen. Springer-Verlag, Stuttgart.
  • Foflonker, F., Ananyev, G., Qiu, H., Morrison, A., Palenik, B., Dismukes, G.C. & Bhattacharya, D. (2016). The unexpected extremophile: tolerance to fluctuating salinity in the green alga Picochlorum. Algal Research, 16: 465–472.
  • Fuller, N.J., Campbell, C., Allen, D.J., Pitt, F.D., Le Gall, F., Vaulot, D. & Scanlan, D.J. (2006a). Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquatic Microbial Ecology, 43: 79–93.
  • Fuller, N.J., Tarran, G., Cummings, D.G., Woodward, M.S., Orcutt, K.M., Yallop, M., Le Gall, F. & Scanlan, D.J. (2006b). Molecular analysis of photosynthetic picoeukaryote community structure along an Arabian Sea transect. Limnology and Oceanography, 51: 2052–2514.
  • Galloway, A.W. & Winder, M. (2015). Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE, 10: e0130053.
  • Garcia da Silva, T., Bock, C., Sant’Anna, C.L., Bagatini, I.L., Wodniok, S. & Vieira, A. A.H. (2017). Selenastraceae (Sphaeropleales, Chlorophyceae): rbcL, 18S rDNA and ITS-2 secondary structure enlightens traditional taxonomy, with description of two new genera, Messastrum gen. nov. and Curvastrum gen. nov. Fottea, 17: 1–19.
  • Gašparović, B., Kazazić, S.P., Cvitešić, A., Penezić, A. & Frka, S. (2015). Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection. Journal of Chromatography A, 1409: 259–267.
  • Gašparović, B., Kazazić, S.P., Cvitešić, A., Penezić, A. & Frka, S. (2017). Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection” [Journal of Chromatography A. 1409 (2015): 259–267]. Journal of Chromatography A, 1521: 168–169.
  • Glibert, P.M. & Legrand, C. (2006). The diverse nutrient strategies of harmful algae: focus on osmotrophy. In The Ecology of Harmful Algae (Grane´li, E. & Turner, J., editors), 163–175. Springer-Verlag, New York.
  • Gonzalez-Esquer, C.R., Twary, S.N., Hovde, B.T. & Starkenburg, S.R. (2018). Nuclear, chloroplast, and mitochondrial genome sequences of the prospective microalgal biofuel strain Picochlorum soloecismus. Genome Announcments, 6: e01498–17.
  • Gonzalez-Esquer, C.R., Wright, K.T., Sudasinghe, N., Carr, C.K., Sanders, C.K., Turmo, A., Kerfeld, C.A., Twary, S. & Dale, T. (2019). Demonstration of the potential of Picochlorum soloecismus as a microalgal platform for the production of renewable fuels. Algal Research, 43: 101658.
  • Grob, C., Ulloa, O., Claustre, H., Huot, Y., Alarcon, G. & Marie, D. (2007). Contribution of picoplankton to the total particulate organic carbon concentration in the eastern South Pacific. Biogeosciences, 4: 837–852.
  • Guillard, R.R., Keller, M.D., O’Kelly, C.J. & Floyd, G.L. (1991). Pycnococcus provasolii gen. et sp. nov., a coccoid prasinoxanthin-containing phytoplankter from the western North Atlantic and Gulf of Mexico. Journal of Phycology, 27: 39–47.
  • Guillou, L., Chrétiennot-Dinet, M.J., Medlin, L.K., Claustre, H., Loiseaux-de Goër, S. & Vaulot, D. (1999). Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology, 35: 368–381.
  • Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org.
  • Guschina, I.A. & Harwood, J.L. (2009). Algal lipids and effect of the environment on their biochemistry. In Lipids in Aquatic Ecosystems ( Kainz, M., Brett, M. & Arts, M., editors), 1–24. Springer, New York.
  • Härtel, H., Lokstein, H., Dörmann, P., Grimm, B. & Benning, C. (1997). Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiology, 115: 1175–1184.
  • Henley, W.J., Hironaka, J.L., Guillou, L., Buchheim, M.A., Buchheim, J.A., Fawley, M.W. & Fawley, K.P. (2004). Phylogenetic analysis of the ‘Nannochloris-like’ algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia, 43: 641–652.
  • Hepperle, D. & Krienitz, L. (2001). Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. International Review of Hydrobiology, 86: 269–284.
  • Hoshina, R., Kobayashi, M., Suzaki, T. & Kusuoka, Y. (2018). Brandtia ciliaticola gen. et sp. nov. (Chlorellaceae, Trebouxiophyceae) a common symbiotic green coccoid of various ciliate species. Phycological Research, 66: 76–81.
  • http://sagdb.uni-goettingen.de/; accessed 1.03.2018. at 16:00.
  • https://ncma.bigelow.org/; accessed 1.03.2018. at 16:00.
  • https://utex.org/; accessed 1.03.2018. at 16:00.
  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54: 621–639.
  • http://roscoff-culture-collection.org/
  • Jouenne, F., Eikrem, W., Le Gall, F., Marie, D., Johnsen, G. & Vaulot, D. (2011). Prasinoderma singularis sp. nov. (Prasinophyceae, Chlorophyta), a solitary coccoid prasinophyte from the South-East Pacific Ocean. Protist, 162: 70–84.
  • Karlson, B., Potter, D., Kuylenstierna, M. & Andersen, R.A. (1996). Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulata sp. nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia, 35: 253–260.
  • Kattner, G. (1989). Lipid composition of Calanus finmarchicus from the North Sea and the Arctic. A comparative study. Comparative Biochemistry and Physiology, 94: 185–188.
  • Kirk, J.T.O. (1994). Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.
  • Knight-Jones, E.W. (1951). Preliminary studies of nanoplankton and ultraplankton systematics and abundance by a quantitative culture method. Journal du Conseil, 17: 140–155.
  • Kobayashi, K., Kondo, M., Fukuda, H. & Nishimura, M. (2007). Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proceedings of the National Academy of Sciences USA, 104: 17216–17221.
  • Krienitz, L., Bock, C., Dadheech, P.K. & Pröschold, T. (2011). Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia, 50: 89–106.
  • Krienitz, L., Huss, V.A.R. & Hümmer, C. (1996). Picoplanktonic Choricystis species (Chlorococcales, Chlorophyta) and problems surrounding the morphologically similar ‘Nannochloris-like algae’. Phycologia, 35: 332–341.
  • Kumar, S.D., Ananth, S., Santhanam, P., Ahamed, A.P. & Thajuddin, N. (2019). Effect of photoperiod (PP) and photosynthetic photon flux intensity (PPFI) on nutrients consumption, growth and lipid profile of unusual microalga Picochlorum maculatum (PSDK01) in shrimp culture effluent. Indian Journal of Experimental Biology, 57: 105–115.
  • Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics, 30: 3276–3278.
  • Leatherbarrow, R. (2009). GraFit data analysis software for Windows. 7.0.3 edn. Erithacus Software Ltd. Horley.
  • Lee, K.K., Lim, P.E., Poong, S.W., Wong, C.Y., Phang, S.M. & Beardall, J. (2018). Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. Chinese Journal of Oceanology and Limnology, 36: 1266–1279.
  • Lengyel, E., Kovács, A.W., Padisák, J. & Stenger-Kovács, C. (2015). Photosynthetic characteristics of the benthic diatom species Nitzschia frustulum (Kützing) Grunow isolated from a soda pan along temperature-, sulfate- and chloride gradients. Aquatic Ecology, 49: 401–416.
  • Lepère, C., Demura, M., Kawachi, M., Romac, S., Probert, I. & Vaulot, D. (2011). Whole-genome amplification (WGA) of marine photosynthetic eukaryote populations. FEMS Microbiology Ecology, 76: 513–523.
  • Li, W.K.W. (1994). Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnology and Oceanography, 39: 169–175.
  • Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y. & Chen, F. (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresource Technology, 102: 106–110.
  • Marañón, E. (2009). Phytoplankton size structure. In Encyclopedia of Ocean Sciences. 2nd ed. (Steele, J.H., editor), 445–452. Academic Press, Elsevier.
  • Massana, R., Balagué, V., Guillou, L. & Pedrós-Alió, C. (2004). Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiology Ecology, 50: 231–243.
  • Massana, R. & Logares, R. (2013). Eukaryotic versus prokaryotic marine picoplankton ecology. Environmental Microbiology, 15: 1254–1261.
  • Minh, B.Q., Nguyen, M.A.T. & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30: 1188–1195.
  • Mock, T. & Kroon, B.M. (2002). Photosynthetic energy conversion under extreme conditions – II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry, 61: 53–60.
  • Moreau, H., Verhelst, B., Couloux, A., Derelle, E., Rombauts, S., Grimsley, N., Van Bel, M., Poulain, J., Katinka, M., Hofmann-Marriott, M.F., Piganeau, G., Rouzé, P., Da Silva, C., Wincker, P., Van de Peer, Y. & Vandepoele, K. (2012). Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 13: R74.
  • Motti, C., Curiel, D., Rismondo, A., Bellemo, G., Dri, C., Checchin, E. & Marzocchi, M. (2005). First report of a species of Prasiola (Chlorophyta: Prasiolacea) from the Mediterranean Sea (Lagoon of Venice). Scientia Marina, 69: 343–346.
  • Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32: 268–274.
  • Novak, T., Godrijan, J., Marić Pfannkuchen, D., Djakovac, T., Medić, N., Ivančić, I., Mlakar, M. & Gašparović, B. (2019). Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Science of the Total Environment, 668: 171–183.
  • Padisák, J. (2004). Phytoplankton. In The Lakes Handbook, vol 1. Limnology and Limnotic Ecology (O’Sullivan, P. & Reynolds, C.S., editors), 251–309. Blackwell Science, Oxford.
  • Pálmai, T., Szabó, B., Hubai, K.E. & Padisák, J. (2018). Photosynthetic performance of two freshwater red algal species. Acta Botanica Croatica, 77: 135–40.
  • Parrish, C.C. & Wangersky P.J. (1987). Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Marine Ecology Progress Series 35: 119–128.
  • Platt, T., Gallegos, C.L. & Harrison, W.G. (1980). Photoinibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, Instituto Del Mar Del Peru Boletin, Volumen extraordinario.
  • Pringsheim, E.G. (1963). Farblose Algen, ein beitrag zur evolutionsforschung. G. Fischer, Stuttgart. Germany.
  • Procházková, K., Nemcová, Y., Kulichová, J. & Neustupa, J. (2015). Morphology and phylogeny of parasitic and free-living members of the genus Phyllosiphon (Trebouxiophyceae, Chlorophyta). Nova Hedwigia, 101: 501–518.
  • R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
  • Rambaut, A., Drummond, A.J. & Suchard, M. (2007). Tracer v1. 6. http://beast.bio.ed.ac.uk.Tracer
  • Reynolds, C. (1988). Functional morphology and the adaptive strategies of freshwater phytoplankton. In Growth and Reproductive Strategies of Freshwater Phytoplankton, 388–433. Cambridge University Press, Cambridge.
  • Reynolds, E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology, 17: 208.
  • Richardson, T.L. & Jackson, G.A. (2007). Small phytoplankton and carbon export from the surface ocean. Science, 315: 838–840.
  • Roesler, C.S., Culbertson, C.W., Etheridge, S.M., Goericke, R., Kiene, R.P., Miller, L.G. & Oremland, R.S. (2002). Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnology and Oceanography, 47: 440–452.
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542.
  • Schagerl, M., Burian, A., Gruber-Dorninger, M., Oduor, S.O. & Kaggwa, M.N. (2015). Algal communities of Kenyan soda lakes with a special focus on Arthrospira fusiformis. Fottea, 15: 245–257.
  • Sieracki, M.E., Poulton, N.J., Jaillon, O., Wincker, P., de Vargas, C., Rubinat-Ripoll, L., Tepanauskas, R., Logares, R. & Massana, R. (2019). Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Scientific Reports, 9: 6025.
  • Šilović, T., Ljubešić, Z., Mihanović, H., Olujić, G., Terzić, S., Jakšić, Ž. & Viličić, D. (2011). Picoplankton composition related to thermohaline circulation: the Albanian boundary zone (southern Adriatic) in late spring. Estuarine, Coastal and Shelf Science, 91: 519–525.
  • Škaloud, P., Friedl, T., Hallmann, C., Beck, A. & Dal Grande, F. (2016). Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 52: 599–617.
  • Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B. & Vörös, L. (2013). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48: 427–436.
  • Stanier, R.Y., Deruelles, J., Rippka, R., Herdman, M. & Waterbury, J.B. (1979). Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. Microbiology, 111: 1–6.
  • Su, X., Xu, J., Yan, X., Zhao, P., Chen, J., Zhou, C., Zhao, F. & Li, S. (2013). Lipidomic changes during different growth stages of Nitzschia closterium f. minutissima. Metabolomics 9: 300–310.
  • Temraleeva, A.D. & Moslalenko, S.V. (2019). Application of morphological and molecular systematics for identification of green microalgae of the genus Chlorococcum and some closely related taxa. Microbiology, 88: 27–38.
  • Throndsen, J. (1978). The dilution-culture method. In Phytoplankton Manual, 218–224. Unesco, Paris.
  • Tragin, M., Lopes dos Santos, A., Christen, R. & Vaulot, D. (2016). Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences. Perspectives in Phycology, 3: 141–154.
  • Tragin, M. & Vaulot, D. (2018). Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Scientific Reports, 8: 14020.
  • Tran, D., Giordano, M., Louime, C., Tran, N., Vo, T., Nguyen, D. & Hoang, T. (2014). An isolated Picochlorum species for aquaculture, food, and biofuel. North American Journal of Aquaculture, 76: 305–311.
  • Üveges, V., Vörös, L., Padisák, J. & Kovács, A.W. (2011). Primary production of epipsammic algal communities in Lake Balaton (Hungary). Hydrobiologia, 660: 17–27.
  • Üveges, V., Tapolczai, K., Krienitz, L. & Padisák, J. (2012). Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia, 698: 263–272.
  • van Meer, G., Voelker, D.R. & Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology, 9: 112–124.
  • Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. (2008). The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiology Reviews, 32: 795–820.
  • Watanabe, K. & Fujii, K. (2016). Isolation of high-level-CO2-preferring Picochlorum sp. strains and their biotechnological potential. Algal Research, 18: 135–143.
  • Webb, W.L., Newton, M. & Starr, D. (1974). Carbon dioxide exchange of Alnus rubra – a mathematical model. Oecologia, 17: 281–291.
  • West, N.J., Schönhuber, W.A., Fuller, N.J., Amann, R.I., Rippka, R., Post, A.F. & Scanlan, D.J. (2001). Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology, 147: 1731–1744.
  • Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3: 180–185.
  • Yun, Y.S. & Park, J.M. (2003). Kinetic modeling of the light‐dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnology and Bioengineering, 83: 303–311.
  • Zhu, Y. & Dunford, N.T. (2013). Growth and biomass characteristics of Picochlorum oklahomensis and Nannochloropsis oculata. Journal of the American Oil Chemists’ Society, 90: 841–849.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.