258
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of nitrogen deficiency on the transcriptome of the oleaginous alga Parachlorella kessleri TY

, , , , , , & show all
Pages 203-215 | Received 28 Apr 2020, Accepted 08 Aug 2020, Published online: 19 Oct 2020

References

  • Alfonsoparra, C., Ahmedbraimah, Y.H., Degner, E.C., Avila, F.W., Villarreal, S.M. & Pleiss, J.A. (2016). Mating induced transcriptome changes in the reproductive tract of female Aedes aegypti. PLoS Neglected Tropical Diseases, 10: e0004451.
  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J.H. & Lipman, D.J. (1997). Gapped blast and psi-blast: a new generation of protein databases search programs. Nucleic Acids Research, 25: 3389–3402.
  • Anders, S. & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 4: 1–9.
  • Bi, G.C. (2016). Wastewater culture and transcriptome analysis of Navicula sp. N6. Dissertation, South China Agricultural University, Guangzhou.
  • Buchfink, B., Xie, C. & Huson, D.H. (2014). Fast and sensitive protein alignment using diamond. Nature Methods, 12: 59–60.
  • Chinnasamy, S., Bhatnagar, A., Hunt, R.W. & Das, K.C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101: 3097–3105.
  • Chokshi, K., Pancha, I., Ghosh, A. & Mishra, S. (2017). Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresource Technology, 244: 1376–1383.
  • Conesa, A. & Götz, S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 1: 1–12.
  • Davidson, N.M. & Oshlack, A. (2014). Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology, 15: 410–424.
  • Dean, A.P., Sigee, D.C., Estrada, B. & Pittman, J.K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101: 4499–4507.
  • Deng, X.D., Fei, X.W. & Li, Y.J. (2011). The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. African Journal of Microbiology Research, 5: 260–270.
  • Gao, Y.F., Feng, J., Lv, J.P., Liu, Q., Nan, F.R., Liu, X.D. & Xie, S.L. (2019). Physiological changes of Parachlorella kessleri TY02 in lipid accumulation under nitrogen stress. International Journal of Environmental Research and Public Health, 16: 1188–1205.
  • Gao, Y.F., Lv, J.P., Feng, J., Liu, Q. & Xie, S.L. (2017). Morphology, phylogeny and lipid components of an oil-rich microalgal strain. Journal of Applied Botany and Food Quality, 90: 298–305.
  • Grabherr, M.G., Haas, B.J. & Yassour, M. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29: 644–652.
  • He, Q.N. (2017). On lipid accumulation in oleaginuous microalgae affected by light intensity and its application in scale up cultivation. Dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan.
  • He, Q.N., Yang, H.J. & Hu, C.X. (2018). Effects of temperature and its combination with high light intensity on lipid production of Monoraphidium dybowskii Y2 from semi-arid desert areas. Bioresource Technology, 265: 407–414.
  • Holmes, D.S. & Bonner, J. (1973). Preparation, molecular weight, base composition, and secondary structure of giant nuclear ribonucleic acid. Biochemistry, 12: 2330–2338.
  • Janßen, H.J. & Steinbüchel, A. (2014). Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnology for Biofuels, 7: 7.
  • Ji, X., Cheng, J., Gong, D., Zhao, X., Qi, Y., Su, Y. & Ma, W. (2018). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga- Scenedesmus obliquus XJ002. Science of the Total Environment, 633: 593–599.
  • Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M. & Itoh, M. (2007). KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36: 480–484.
  • Kong, F., Liang, Y., Légeret, B., Beyly-Adriano, A., Blangy, S., Haslam, R.P., Napier, J.A., Beisson, F., Peltier, G. & Li-Beisson, Y. (2017). Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. Plant Journal, 90: 358.
  • Li, J. (2013). Functional genomics of microalgal oil production using Nannochloropsis as a model. Dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan.
  • Li, L., Zhang, G. & Wang, Q. (2016). De novo transcriptomic analysis of Chlorella sorokiniana reveals differential genes expression in photosynthetic carbon fixation and lipid production. BMC Microbiology, 16: 1–12.
  • Liu, C.L., Wu, G.T., Huang, X.H., Liu, S. & Cong, B.L. (2012). Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles, 16: 419–425.
  • Lv, J.P., Guo, J.Y., Feng, J., Liu, Q. & Xie, S.L. (2017). Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater. Bioresource Technology, 234: 289–296.
  • Markou, G. & Muylaert, K. (2016). Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresource Technology, 216: 453–461.
  • Meng, G. (2018). The differences of lipids and arachidonic acid accumulation and transcriptomic analysis of three coccoid green microalgae. Dissertation, Jinan University, Guangzhou.
  • Mera, R., Torres, E. & Abalde, J. (2016). Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media. Journal of Phycology, 52: 75–88.
  • Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C. & Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35: W182–W185.
  • Ota, S., Oshima, K., Yamazaki, T., Kim, S., Yu, Z., Yoshihara, M., Takeda, K., Takeshita, T., Hirata, A., Bišová, K., Zachleder, V., Hattori, M. & Kawano, S. (2016). Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure. Biotechnology for Biofuels, 9: 13–23.
  • Prajapati, S.K., Kaushik, P., Malik, A. & Vijay, V.K. (2013). Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresource Technology, 135: 232–238.
  • Rismani-Yazdi, H., Haznedaroglu, B.Z., Bibby, K. & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12: 148–165.
  • Rismani-Yazdi, H., Haznedaroglu, B.Z., Hsin, C. & Peccia, J. (2012). Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnology for Biofuels, 5: 74.
  • Sabeeha S. Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., Marshall, W.F., Qu, L.H., Nelson, D.R., Sanderfoot, A.A., Spalding, M.H., Kapitonov, V.V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S.M., Grimwood, J., Schmutz, J., Chlamydomonas Annotation Team, JGI Annotation Team, Grigoriev, I.V., Rokhsar, D.S. & Grossman, A.R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318: 245–250.
  • Safonova, E. & Reisser, W. (2010). Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycological Research, 53: 189–193.
  • Shaikh, K.M., Nesamma, A.A., Abdin, M.Z. & Jutur, P.P. (2019). Molecular profiling of an oleaginous trebouxiophycean alga Parachlorella kessleri subjected to nutrient deprivation for enhanced biofuel production. Biotechnology for Biofuels, 12: 182–197.
  • Shang, C., Bi, G., Qi, W., Wang, Z.M. & Xie, J. (2016). Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Research, 13: 318–326.
  • Wang, H., Gao, L., Shao, H., Zhou, W. & Liu, T. (2017). Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases. Bioprocess and Biosystems Engineering, 40: 1327–1335.
  • Wang, J.Y., Zhu, S.G. & Xu, C.F. (2002). Fatty Acid Catabolism, in Biochemistry. Higher Education-Publishing Press, Beijing.
  • Zahra, L., Parvaneh, A., Hossein, A. & Neda, S. (2019). Differential carbon partitioning and fatty acid composition in mixotrophic and autotrophic cultures of a new marine isolate Tetraselmis sp. KY114885. Journal of Applied Phycology, 31: 201–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.