623
Views
5
CrossRef citations to date
0
Altmetric
Research Article

UV-B irradiation enhances the production of unique mycosporine-like amino acids and carotenoids in the subaerial cyanobacterium Pseudanabaena sp. CCNU1

, , , &
Pages 316-323 | Received 10 Aug 2020, Accepted 09 Sep 2020, Published online: 09 Mar 2021

References

  • Balskus, E.P. & Walsh, C.T. (2010). The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science, 329: 1653–1656.
  • Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcao, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P. & Pinto, E. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, 146: 60–78.
  • Carignan, M.O., Cardozo, K.H.M., Oliveira-Silva, D., Colepicolo, P. & Carreto, J.I. (2009). Palythine-threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral Pocillopora capitata. Journal of Photochemistry and Photobiology B, 94: 191–200.
  • Carreto, J.I. & Carignan, M.O. (2011). Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Marine Drugs, 9: 387–446.
  • Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 83: 317–340.
  • Chen, Z., Jiang, H.B., Gao, K. & Qiu, B.S. (2020). Acclimation to low ultraviolet-B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium Nostoc sphaeroides. Environmental Microbiology, 22: 183–197.
  • Chrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M. & Bialczyk, J. (2017). Mycosporine-like amino acids: potential health and beauty ingredients. Marine Drugs, 15: 326.
  • D’Agostino, P.M., Javalkote, V.S., Mazmouz, R., Pickford, R., Puranik, P.R. & Neilan, B.A. (2016). Comparative profiling and discovery of novel glycoslated mycosporine-like amino acids in two strains of cyanobacterium Scytonema cf. crispum. Applied and Environmental Microbiology, 82: 5951–5959.
  • Derikvand, P., Llewellyn, C.A. & Purton, S. (2017). Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. European Journal of Phycology, 52: 43–56.
  • Domonkos, I., Kis, M., Gombos, Z. & Ughy, B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research, 52: 539–561.
  • Ehling-Schulz, M., Bilger, W. & Scherer, S. (1997). UV-B-induced synthesis of photoprotective pigments and excellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology, 179: 1940–1945.
  • Flint, S. & Caldwell, M. (2003). A biological spectral weighting function for ozone depletion research with higher plants. Physiologia Plantarum, 117: 137–144.
  • Gao, Q. & Garcia-Pichel, F. (2011a). Microbial ultraviolet sunscreens. Nature Review Microbiology, 9: 791–802.
  • Gao, Q. & Garcia-Pichel, F. (2011b). An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133. Journal of Bacteriology, 193: 5923–5928.
  • Götz, T., Windhovel, U., Böger, P. & Sandmann, G. (1999). Protection of photosynthesis against UV-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC 7942. Plant Physiology, 120: 599–604.
  • Graham, J.E. & Bryant, D.A. (2008). The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Bacteriology, 190: 7966–7974.
  • Graham, J.E., Lecomte, J.T.J. & Bryant, D.A. (2008). Synechoxanthin, an aromatic C40 xanthophyll that is a major carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. Journal of Natural Products, 71: 1647–1650.
  • Ivanov, A.G., Miskiewicz, E., Clarke, A.K. & Greenberg, B.M. (2000). Protection of photosystem II against UV-A and UV-B radiation in the cyanobacterium Plectonema boryanum: the role of growth temperature and grow irradiance. Photochemistry and Photobiology, 72: 772–779.
  • Jain, S., Prajapat, G., Abrar, M., Ledwani, L., Singh, A. & Agrawal, A. (2017). Cyanobacteria as efficient producers of mycosporine-like amino acids. Journal of Basic Microbiology, 57: 715–727.
  • Joshi, D., Mohandass, C. & Dhale, M. (2018). Effects of UV-B radiation and desiccation stress on photoprotective compounds accumulation in marine Leptolyngbya sp. Applied Biochemistry and Biotechnology, 184: 35–47.
  • Llewellyn, C.A., Airs, R.L., Farnham, G. & Greig, C. (2020). Synthesis, regulation and degradation of carotenoids under low level UV-B radiation in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. Frontiers in Microbiology, 11: 163.
  • Mandal, S., Rath, J. & Adhikary, S.P. (2011). Adaptation strategies of the sheathed cyanobacterium Lyngbya majuscule to ultraviolet-B. Journal of Photochemistry and Photobiology B, 102: 115–122.
  • Paliwal, C., Ghosh, T., Bhayani, K., Maurya, R. & Mishra, S. (2015). Antioxidant, anti-nephrolithe activities and in vitro digestibility studies of three different cyanobacterial pigment extracts. Marine Drugs, 13: 5384–5401.
  • Pope, M.A., Spence, E., Seralvo, V., Gacesa, R., Heidelberger, S., Weston, A.J., Dunlap, W.C., Shick, J.M. & Long, P.F. (2015). O-methyltransferase is shared between the pentose phosphate and shikimate pathway and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem, 16: 320–327.
  • Rosic, N.N. (2019). Mycosporine-like amino acid: making the foundation for organic personalized sunscreens. Marine Drugs, 17: 638.
  • Shang, J.L., Zhang, Z.C., Yin, X.Y., Chen, M., Hao, F.H., Wang, K., Feng, J.L., Xu, H.F., Yin, Y.C., Tang, H.R. & Qiu, B.S. (2018). UV-B induced biosynthesis of a novel sunscreen compound in solar radiation and desiccation tolerant cyanobacteria. Environmental Microbiology, 20: 200–213.
  • Shick, J.M. & Dunlap, W.C. (2002). Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annual Review of Physiology, 64: 223–262.
  • Singh, S.P., Klisch, M., Sinha, R.P. & Häder, D.P. (2010). Sulfur deficiency changes mycosporine-like amino acid (MAA) composition of Anabaena variabilis PCC 7937: a possible role of sulfur in MAA bioconversion. Photochemistry and Photobiology, 86: 862–870.
  • Takaichi, S. (2013). Tetraterpenes: carotenoids. In Natural Products (Ramawat KG, Mérillon JM, editors). doi: 10.1007/978-3-642-22144-6_141. Springer-Verlag, Berlin.
  • Takaichi, S. & Mochimaru, M. (2007). Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cellular and Molecular Life Sciences, 64: 2607–2619.
  • Takaichi, S., Maoka, T. & Masamoto, K. (2001). Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2́ -dimethyl-fucoside, (3R, 2́ S)-myxol 2́ -(2,4-di-O-methyl-α-L- fucoside), not rhamnoside. Plant and Cell Physiology, 42: 756–762.
  • Wada, N., Sakamoto, T. & Matsugo, S. (2015). Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants, 4: 603–646.
  • Wojtasiewicz, B. & Stoń-Egiert, J. (2016). Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. Journal of Applied Phycology, 28: 2299–2314.
  • Yang, Y.W., Yin, Y.C., Li, Z.K., Huang, D., Shang, J.L., Chen, M. & Qiu, B.S. (2019). Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynthesis Research, 140: 103–113.
  • Zhang, Z.C., Li, Z.K., Yin, Y.C., Li, Y., Jia, Y., Chen, M. & Qiu, B.S. (2019). Widespread occurrence and unexpected diversity of red-shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems. Environmental Microbiology, 21: 1497–1510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.