744
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation*

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 468-493 | Received 17 Oct 2020, Accepted 20 Jan 2021, Published online: 16 Jun 2021

References

  • Adey, W.H. (1964). The genus Phymatolithon in the Gulf of Maine. Hydrobiologia, 24: 377–420.
  • Adey, W.H. (1965). The genus Clathromorphum in the Gulf of Maine. Hydrobiologia, 26: 539–573.
  • Adey, W.H. (1966a). The genera Lithothamnion, Leptophytum (nov. gen.) and Phymatolithon in the Gulf of Maine. Hydrobiologia, 28: 321–370.
  • Adey, W.H. (1966b). Distribution of saxicolous crustose corallines in the northwestern North Atlantic. Journal of Phycology, 2: 49–54.
  • Adey, W.H. (1970a). The crustose corallines of the northwestern North Atlantic, including Lithothamnium lemoineae n. sp. Journal of Phycology, 6: 225–229.
  • Adey, W.H. (1970b). Some relationships between crustose corallines and their substrate. Soc. Sciencia Islandica, 2: 21–25.
  • Adey, W.H. (1970c). A revision of the Foslie crustose coralline herbarium. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1: 1–46.
  • Adey, W.H. (1971). The sublittoral distribution of crustose corallines on the Norwegian coast. Sarsia, 46: 41–58.
  • Adey W.H. (1973). Temperature control of reproduction and productivity in a subarctic coralline alga. Phycologia, 12: 111–118.
  • Adey, W.H. & Adey, P.J. (1973). Studies of the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. British Phycological Journal, 8: 343–407.
  • Adey, W.H., Chamberlain, Y.M. & Irvine, L.M. (2005). An SEM-based analysis of the morphology, anatomy and reproduction of Lithothamnion tophiforme (Esper) Unger (Corallinales, Rhodophyta), with a comparative study of associated North Atlantic Arctic/Subarctic Melobesioideae. Journal of Phycology, 41: 1010–1024.
  • Adey, W.H., Halfar, J., Humphreys, A., Suskiewicz, T., Belanger, D., Gagnon, P. & Fox, M. (2015a). Subarctic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios, 30: 281–293.
  • Adey, W.H., Halfar, J. & Williams, B. (2013). Biological, physiological and ecological factors controlling high magnesium carbonate formation and a precision Arctic/Subarctic marine climate archive: the coralline genus Clathromorphum emend Adey. Smithsonian Contributions to Marine Science, 40: 1–41.
  • Adey, W.H. & Hayek, L.-A.C. (2011). Elucidating marine biogeography with macrophytes: quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct Subarctic region in the Northwestern Atlantic. Northeastern Naturalist, 18: 1–128.
  • Adey, W.H., Hernández-Kantún, J.J., Gabrielson. P.W., Nash, M.C. & Hayek, L.-A.C. (2018). Phymatolithon (Melobesioideae, Hapalidiales) in the Boreal–Subarctic Transition Zone of the North Atlantic: A Correlation of Plastid DNA Markers with Morpho-Anatomy, Ecology, and Biogeography. The Smithsonian Institution, Washington, DC.
  • Adey, W.H., Hernández-Kantún, J.J., Johnson, G. & Gabrielson. P.W. (2015b). DNA sequencing, anatomy and calcification patterns support a monophyletic, subarctic, carbonate reef-forming Clathromorphum (Hapalidiaceae, Corallinales, Rhodophyta). Journal of Phycology, 51: 189–203.
  • Adey, W.H. & Lebednik, P. (1967). Catalog of the Foslie Herbarium. Kongelige Norske Videnskabers Selskab Museet, Trondheim.
  • Adey, W.H., Lindstrom, S.C., Hommersand, M.H. & Müller, K.M. (2008). The biogeographic origin of Arctic endemic seaweeds: a thermogeographic view. Journal of Phycology, 44: 1384–1394.
  • Adey W.H., Masaki, T. & Akioka, H. (1976). The distribution of crustose corallines in eastern Hokkaido and the biogeographic relationships of the flora. Bulletin of the Faculty of Fisheries, Hokkaido University, 4: 303–313.
  • Adey, W.H. & McKibbin, D. (1970). Studies of the maerl species of the Ria de Vigo. Botanica Marina, 8: 100–106.
  • Adey, W.H. & Steneck, R. (2001). Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. Journal of Phycology, 37: 677–698.
  • Amado-Filho, G.M., Maneveldt, G.W., Pereira-Filho, G.H., Manso, R.C.C., Bahia, M.B., Barros-Barreto, M.B. & Guimaraes, S.M.P.B. (2010). Seaweed diversity associated with a Brazilian tropical rhodolith bed. Ciencias Marinas, 36: 371–391.
  • Anglés d’Auriac, M.B., Le Gall, L., Peña, V., Hall-Spencer, J.M., Steneck, R.S., Fredriksen, S., Gitmark, J., Christie, H., Husa, V., Grefsrud, E.S. & Rinde, E. (2019) Efficient coralline algal psbA mini barcoding and High Resolution Melt (HRM) analysis using a simple custom DNA preparation. Scientific Reports, 578: 578.
  • Areschoug, J.E. (1875). Observationes phycologicae. Particula tertia. De algis nonnullis scandinavicis et de conjuctione Phaeozoosporarum Dictyosiphonis hippuroidis. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series 3, 10(1): 1–36.
  • Athanasiadis, A. (2016). Phycologia Europaea Rhodophyta Vol. I. Thessaloniki: Published and distributed by the author.
  • Bélanger, D. & Gagnon, P. (2020) Low growth resilience of subarctic rhodoliths (Lithothamnion glaciale) to coastal eutrophication. Marine Ecology Progress Series, 642: 117–132.
  • Blake, C. & Maggs, C. (2003). Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia, 42: 606–612.
  • Bringloe, T.T. & Saunders, G.W. (2019). DNA barcoding of the marine macroalgae from Nome, Alaska (Northern Bering Sea) reveals many trans-Arctic species. Polar Biology, 42: 851–864.
  • Brodie, J., Williamson, C., Smale, D., Kamenos, N., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C., Anderson, K., Asnaghi, V., Brownlee, C., Burdett, H., Burrows, M., Collins, S., Donohue, P., Harvey, B., Foggo, A., Noisette, F., Nunes, J., Ragazzola, F., Raven, J., Schmidt, D., Suggett, D., Teichberg, M. & Hall-Spencer, J. (2014). The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4: 2787–2798.
  • Chamberlain, Y.M. & Irvine, L.M. (1994). Melobesioideae Bizzozero. In Seaweeds of the British Isles. Volume 1. Rhodophyta Part 2B Corallinales, Hildenbrandiales (Irvine, L.M. & Chamberlain, Y.M., editors), 159–234. London: HMSO.
  • Chan, P., Halfar, J., Adey, W.H., Lebednik, P.A., Steneck, R.S., Norley, C.J.D. & Holdsworth, D.W. (2020). Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature. Geology, 48: 226–230.
  • Copeland, A., Edinger, E., Devillers, R., Bell, T., LeBlanc, P. & Wroblewski, J. (2013) Marine habitat mapping in support of Marine Protected Area management in subarctic fjord: Gilbert Bay, Labrador, Canada. Journal of Coastal Conservation, 17: 225–237.
  • Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772.
  • Esper, E.J.C. (1789). Die Pflanzenthiere. In Abbildungen nach der Natur mit Farben erleuchtet nebst Beschreibungen. Erster Theil. Part 4: 169–196. Nürnberg: Raspe.
  • Foslie, M. (1891). Contribution to the knowledge of the marine algae of Norway. II. Species from different tracts. Tromsø Museums Aarshefter, 14: 36–58.
  • Foslie, M. (1895). The Norwegian forms of Lithothamnion. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1894: 29–208.
  • Foslie, M. (1896). New or critical Lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1895: 1–10.
  • Foslie, M. (1897). On some Lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1897: 1–20.
  • Foslie, M. (1898a). Systematical survey of the Lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1898(2): 1–7.
  • Foslie, M. (1898b). List of species of the Lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1898(3): 1–11.
  • Foslie, M. (1899). Some new or critical Lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1898(6): 1–19.
  • Foslie, M. (1900). Revised systematical survey of the Melobesieae. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1900: 1–22.
  • Foslie, M. (1905a). Remarks on northern lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1905 (3): 1–138.
  • Foslie, M. (1905b). Lithothamnion vardöense a new alga. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1905: 1–4.
  • Foslie, M. (1908). Algologiske notiser V. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1908: 1–20.
  • Foster, M. (2001). Rhodoliths: between rocks and soft places. Journal of Phycology, 37: 659–667.
  • Freiwald, A. & Henrich, R. (1994). Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology, 41: 963–984.
  • Gabrielson, P.W., Hughey, J.R. & Diaz-Pulido, G. (2018). Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta). Journal of Phycology, 54: 429–434.
  • Gabrielson, P.W., Lindstrom, S.C. & Hughey, J.R. (2019). Neopolyporolithon loculosum is a junior synonym of N. arcticum comb. nov. (Hapalidiales, Rhodophyta), based on sequencing type material. Phycologia, 58: 229–233.
  • Gabrielson, P.W., Miller, K.A. & Martone, P.T. (2011). Morphometric and molecular analyses confirm two species of Calliarthron (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. Phycologia, 50: 298–316.
  • Gagnon, P., Matheson, K. & Stapleton, M. (2012). Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Botanica Marina, 55: 85–99.
  • Gouy, M., Guindon, S. & Gascuel, O. (2010). SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27: 221–224.
  • Guiry, M.D. & Guiry, G.M. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 6 October 2020.
  • Halfar, J., Adey, W.H., Kronz, A., Edinger, E. & Fitzhugh, W. (2013). Arctic sea-ice decline archived by muticentury annual resolution record from crustose coralline algal proxy. Proceedings of the National Academy of Sciences USA, 110: 19737–19741.
  • Halfar, J., Zack, T., Kronz, A. & Zachos, C. (2000). Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): a new biogenic archive. Journal of Geophysical Research, 105: 107–116.
  • Hernández-Kantún, J.J., Gabrielson, P.W., Hughey, J.R., Pezzolesi, L., Rindi, F., Robinson, N.M., Peña, V., Riosmena-Rodriguez, R., Le Gall, L. & Adey, W.H. (2016). Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia, 55: 609–635.
  • Hernández-Kantún, J.J., Rindi, F., Adey, W.H., Heesch, S., Peña, V., Le Gall, L. & Gabrielson, P.W. (2015a). Sequencing type material resolves the identity and distribution of the generitrype Lithophyllum incrustans, and related European species L. hibernicum and L. bathyporum (Corallinales, Rhodophyta). Journal of Phycology, 51: 791–807.
  • Hernández-Kantún, J.J., Riosmena-Rodriguez, R., Hall-Spencer, J.M., Peña, V., Maggs, C.A. & Rindi, F. (2015b). Phylogenetic analysis of rhodolith formation in the Corallinales (Rhodophyta). European Journal of Phycology, 50: 46–61.
  • Heydrich, F. (1900). Les Lithothamniées de l’Expédition Antarctique. Bulletin de la Classes des Sciences de l’Académie royale de Belgique, 1900: 560–566.
  • Hind, K.R., Gabrielson, P.W., Jensen, C.P. & Martone, P.T. (2016). Crusticorallina gen. nov., a non-geniculate genus in the subfamily Corallinoideae (Corallinales, Rhodophyta). Journal of Phycology, 52: 929–941.
  • Hind, K.R., Gabrielson, P.W., Jensen, C.P. & Martone, P.T. (2018). Evolutionary reversals in Bossiella (Corallinales, Rhodophyta): first report of a coralline genus with both geniculate and nongeniculate species. Journal of Phycology, 54:788–798.
  • Hind, K.R., Gabrielson, P.W., Lindstrom, S.C. & Martone, P.T. (2014a). Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. Journal of Phycology, 50: 760–764.
  • Hind, K.R., Gabrielson, P.W. & Saunders, G.W. (2014b). Molecular-assisted alpha taxonomy reveals pseudocryptic diversity among species of Bossiella (Corallinales, Rhodophyta) in the eastern Pacific Ocean. Phycologia, 53: 443–456.
  • Hind, K.R., Miller, K.A., Young, M., Jensen, C., Gabrielson, P.W. & Martone, P.T. (2015). Resolving cryptic species of Bossiella (Corallinales, Rhodophyta) using contemporary and historical DNA. American Journal of Botany, 102: 1–19.
  • Hofmann, L.C. & Heesch, S. (2018). Latitudinal trends in stable isotope signatures and carbon-concentrating mechanisms of northeast Atlantic rhodoliths. Biogeosciences, 15: 6139–1649.
  • Hughey, J. & Gabrielson, P.W. (2012). Comment on “Acquiring DNA sequence data from dried archival red algae (Florideophyceae) for the purpose of applying available names to contemporary genetic species: a critical assesssment”. Botany, 90: 1191–1194.
  • Hughey, J.R., Silva, P.C. & Hommersand, M.H. (2001). Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. Journal of Phycology, 37: 1091–1109.
  • Jaasund, E. (1965). Aspects of the marine algal vegetation of North Norway. Botanica Gothoburgensia, 4: 5–174.
  • Jeong, S.Y., Nelson, W., Sutherland, J.E., Peña, V., Le Gall, L., Díaz-Pulido, G., Won, B.Y. & Cho, T.O. (2020). Corallinapetrales and Corallinapetraceae: a new order and family of coralline red algae including Corallinapetra gabrieli comb. nov. Journal of Phycology (in press). doi: https://doi.org/10.1111/jpy.13115.
  • Jørgensbye, H.I.Ø. & Halfar, J. (2017). Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland. Polar Biology, 40: 517–531.
  • Kamenos, N.A., Burdett, H.L., Aloisio, E., Findlay, H.S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S. & Calosi, P. (2013). Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biology, 19: 3621–3628.
  • Kamenos, N.A. & Law, A. (2010). Temperature controls on coralline algal skeletal growth. Journal of Phycology, 46: 331–335.
  • Kamenos, N.A., Perna, G., Gambi, M.C., Micheli, F. & Kroeker, K.J. (2016). Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proceedings of the Royal Society B: Biological Sciences, 283: 20161159.
  • Kendrick, M.R., Huryn, A.D., Bowden, W.B., Deegan, L.A., Findlay, R.H., Hershey, A.E., Peterson, B.J., Beneš, J.P. & Schuettet, E.B. (2018). Linking permafrost thaw to shifting biogeochemistry and food web resources in an arctic river. Global Change Biology, 24: 5738–5750.
  • Kjellman, F.R. (1877). Bidrag till Kännedomen om Kariska hafvets Algvegetation. Öfversigt af Kongl. Vetenskaps-Akademiens Forhandlingar, 2: 3–30.
  • Kjellman, F.R. (1883). Norra Ishafvets algflora. Vega-expeditionens Vetenskapliga Iakttagelser, 3: 1–431.
  • Kjellman, F.R. (1889). Om Beringhafvets algflora. Kongl. Svenska Vetenskaps-Akademiens Handlingar, 23: 1–58.
  • Konar, B., Riosmena-Rodriguez, R. & Iken, K. (2006). Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Botanica Marina, 49: 355–359.
  • Lebednik, P. (1977 ‘1976’). The Corallinaceae of Northwestern North America. I. Clathromorphum Foslie emend. Adey. Syesis, 9: 59–112.
  • Lee, R.K.S. (1969). A collection of marine algae from Newfoundland. II. Le Naturaliste Canadien, 96: 123–145.
  • Lee, Y.P. (2008). Marine algae of Jeju. Academy Publication, Seoul.
  • Lemoine, M. (1913). Mélobésiées. Revision des Mélobésiées antarctiques. In Deuxième Expédition Antarctique Française (19081910) commandée par le Dr. Jean Charcot, Sciences Naturelles: Documents Scientifiques, Botanique (Masson et Cie, editors), vol. 1, 1–67. Paris.
  • Lindstrom, S.C. & Fredericq, S. (2003). rbcL gene sequences reveal relationships among north-east Pacific species of Porphyra (Bangiales, Rhodophyta) and a new species, P. aestivalis. Phycological Research, 51: 211–224.
  • Lund, S. (1959). The marine algae of East Greenland. I. Taxonomic Part. Meddelser om Grønland, 156: 1–247.
  • Maneveldt, G.W., Gabrielson, P.W., Townsend, R.A. & Kangwe, J. (2019). Lithophyllum longense (Corallinales, Rhodophyta): a species with a widespread Indian Ocean distribution. Phytotaxa, 419: 149–168.
  • Maneveldt, G.W., Jeong, S.Y., Cho, T.O., Hughey, J.R. & Gabrielson, P.W. (2020). Reassessment of misapplied names, Phymatolithon ferox and P. repandum (Hapalidiales, Corallinophycidae, Rhodophyta) in South Africa, based on DNA sequencing of type and recently collected material. Phycologia, 59: 449–455.
  • Martin, S. & Hall-Spencer, J.M. (2017). Effects of ocean warming and acidification on rhodolith/maërl beds. In Rhodolith/Maërl Beds: A Global Perspective (Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J., editors), 55–85. Springer International Publishing, Cham.
  • Martone, P.T., Lindstrom, S.C., Miller, K.A. & Gabrielson, P.W. (2012). Chiharaea and Yamadaia (Corallinales, Rhodophyta) represent reduced and recently derived articulated coralline morphologies. Journal of Phycology, 48: 859–868.
  • McCoy, S.J. & Kamenos, N.A. (2018). Coralline algal skeletal mineralogy affects grazer impacts. Global Change Biology, 24: 4775–4783.
  • Melbourne, L.A., Hernández-Kantún, J.J., Russell, S. & Brodie, J. (2017). There is more to maerl than meets the eye: DNA barcoding reveals a new species in Britain, Lithothamnion erinaceum sp. nov. (Hapalidiales, Rhodophyta). European Journal of Phycology, 52: 166–178.
  • Millar, K. & Gagnon, P. (2018). Mechanisms of stability of rhoodlith beds: sedimentological aspects. Marine Ecology Progress Series, 594: 65–83.
  • Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environment Workshop (GCE), 1–8.
  • Nelson W.A. (2009). Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research, 60: 787–801.
  • Pardo, C., Barbara, I., Barreiro, R. & Peña, V. (2017). Insights into species diversity of associated crustose coralline algae (Corallinophycidae, Rhodophyta) with Atlantic European maerl beds using DNA barcoding. Anales del Jardín Botánico de Madrid, 74: e059.
  • Pardo, C., Lopez, L., Peña, V., Hernández-Kantún, J., Le Gall, L., Bárbara, I. & Barreiro, R. (2014). A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR maritime area. PLoS ONE, 9: e104073.
  • Pearce, C.M. & Scheibling, R.E. (1990). Induction of metamorphosis of larvae of the green sea urchin, Strongylocentrotus droebachiensis, by coralline red algae. Biological Bulletin, 179: 304–3011.
  • Peña, V., Bárbara, I., Grall, J., Maggs, C.A. & Hall-Spencer, J.M. (2014a). The diversity of seaweeds on maerl in the NE Atlantic. Marine Biodiversity, 44: 533–551.
  • Peña, V., De Clerck, O., Afonso-Carrillo, J., Ballesteros, E., Bárbara, I., Barreiro, R. & Le Gall, L. (2015b). An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. European Journal of Phycology, 50: 20–36.
  • Peña, V., Hernández-Kantún, J.J., Adey, W.H. & Le Gall, L. (2018). Assessment of coralline species diversity in the European coasts supported by sequencing of type material: the case study of Lithophyllum nitorum (Corallinales, Rhodophyta). Cryptogamie Algologie, 39: 123–137.
  • Peña, V., Pardo, C., López, L., Carro, B., Hernández-Kantún, J., Adey, W.H., Bárbara, I., Barreiro, R. & Le Gall, L. (2015a). Phymatolithon lusitanicum sp. nov. (Hapalidiales, Rhodophyta): the third most abundant maerl-forming species in the Atlantic Iberian Peninsula. Cryptogamie, Algologie, 36: 429–459.
  • Peña, V., Rousseau, F., De Reviers, B. & Le Gall, L. (2014b). First assessment of the diversity of coralline species forming maerl and rhodoliths in Guadeloupe, Caribbean using an integrative systematic approach. Phytotaxa, 190: 190–215.
  • Pezzolesi, L., Peña, V., Le Gall, L., Gabrielson, P.W., Kaleb, S., Hughey, J.R., Rodondi, G., Hernández-Kantún, J., Falace, A., Basso, D., Cerrano, C. & Rindi, F. (2019). Mediterranean Lithophyllum stictiforme (Corallinales, Rhodophyta) is a genetically diverse species complex: implications for species circumscription, biogeography and conservation of coralligenous habitats. Journal of Phycology, 55: 473–492.
  • Printz, H. (1929). Contributions to a Monograph of the Lithothamnia. After the author’s death collected and edited by Henrik Printz. Aktietrykkeriet, Trondhjem [Trondheim].
  • Puckree-Padua, C.A., Gabrielson, P.W., Hughey, J.R. & Maneveldt, G.W. (2020). DNA sequencing of type material reveals Pneophyllum marlothii comb. nov. from South Africa and P. discoideum comb. nov. (Chamberlainoideae, Corallinales, Rhodophyta) from Argentina. Journal of Phycology (in press). doi: 10.1111/jpy.13047‐20‐081.
  • QGIS.org (2020). QGIS Geographic Information System. QGIS Association.:http//www.qgis.org.
  • Ratnasingham, S. & Hebert, P.D.N. (2007). BOLD: The Bbarcode of Life Ddata Ssystem (:http//www.barcodinglife.org). Molecular Ecology Notes, 7: 355–364.
  • Richards, J.L., Gabrielson, P.W., Hughey, J.R. & Freshwater, D.W. (2018). A re-evaluation of subtidal Lithophyllum species (Corallinales, Rhodophyta) from North Carolina, USA, and the proposal of L. searlesii sp. nov. Phycologia, 57: 318–330.
  • Richards, J.L., Sauvage, T., Schmidt, W.E., Fredericq, S., Hughey, J.R. & Gabrielson, P.W. (2017). The coralline genera Sporolithon and Heydrichia (Sporolithales, Rhodophyta) clarified by sequencing type material of their generitypes and other species. Journal of Phycology, 53: 1044–1059.
  • Riosmena-Rodriguez, R., Nelson, W. & Aguirre, J. (2017). Rhodolith/Maërl Beds: A Global Perspective. Springer International Publishing, Cham.
  • Robinson, N.M., Fernández-García, C., Riosmena-Rodríguez, R., Rosas-Alquicira, E.F., Konar, B., Chenelot, H., Jewett, S.C., Melzer, R.R., Meyer, R., Försterra, G., Häussermann, V. & Macaya, E.C. (2017). Eastern Pacific. In Rhodolith/Maërl Beds: A Global Perspective (Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J., editors), 319–333. Springer International Publishing, Cham.
  • Ronquist, F. & Huelsenbeck, J. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574.
  • Rosenvinge, L.K. (1917). The marine algae of Denmark. Part II. Rhodophyceae II (Cryptonemiales). Kongelige Danske Videnskabernes Selskabs Skrifter, 7. Række, Naturvidenskabelig og Mathematisk Afdeling, 7: 153–284.
  • Rowley, R.J. (1989). Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes? Marine Biology, 100: 485–494.
  • Saunders, De A. (1901). Papers from the Harriman Alaska Expedition XXV. The algae. Proceedings of the Washington Academy of Sciences, 3: 391–486.
  • Saunders, G.W. & McDevit, D.C. (2012). Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. In DNA Barcodes: Methods and Protocols (Kress, W.J. & Erickson, D.L., editors), 207–222. Humana Press, Totowa, NJ.
  • Saunders, G.W. & Moore, T.E. (2013). Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae, 28: 31–43.
  • Schoenrock, K.M., Bacquet, M., Pearce, D., Rea, B.R., Schofield, J.E., Lea, J., Mair, D. & Kamenos, N. (2018a). Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). Journal of Phycology, 54: 690–702.
  • Schoenrock K.M., Vad, J., Muth, A., Pearce, D.M., Rea, B.R., Schofield, J.E. & Kamenos, N.A. (2018b). Biodiversity of kelp forest and coralline algae habitats in southwestern Greenland. Diversity, 10: 117.
  • Sissini, M.N., Oliveira, M.C., Gabrielson, P.W., Robinson, N.M., Okolodkov, Y.B., Riosmena-Rodriguez, R. & Horta, P.A. (2014). Mesophyllum erubescens (Corallinales, Rhodophyta) – so many species in one epithet. Phytotaxa, 190: 299–319.
  • Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.
  • Steneck, R.S. (1978). Factors influencing the distribution of crutose coralline algae (Rhodophyta, Corallinaceae) in the Damariscotta River Estuary, Maine. Thesis. University of Maine, USA.
  • Steneck, R.S. (1982). A limpet-coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology, 63: 507–522.
  • Strömfelt, H.F.G. (1886). Einige für die Wissenschaft neue Meeresalgen aus Island. Botanisches Zentralblatt, 26: 172–173.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729.
  • Teed, L., Bélanger, D., Gagnon, P. & Edinger, E. (2020). Calcium carbonate (CaCO3) production of a subpolar rhodolith bed: methods of estimation, effect of bioturbators, and global comparisons. Estuarine and Coastal Shelf Science, 242: 106822.
  • Teichert, S. (2014). Hollow rhodoliths increase Svalbard’s shelf biodiversity. Scientific Reports, 4: 6972.
  • Teichert, S., Woelkerling, W., Rüggeberg, A., Wisshak, M., Piepenburg, D., Meyerhöfer, M., Form, A., Büdenbender, J. & Freiwald, A. (2012). Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80° 31’ in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia, 51: 371–390.
  • Teichert, S., Woelkerling, W., Rüggeberg, A., Wisshak, M., Piepenburg, D., Meyerhöfer, M., Form, A. & Freiwald, A. (2014). Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies, 60: 15–37.
  • Thiers, B. (2021). Index Herbariorum: A global directory of public herbaria and associated staff. New York: Botanical Garden’s Virtual Herbarium. available at: http://sweetgum.nybg.org/ih/.
  • Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (eds.) (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten.
  • Unger, F. (1858). Beiträge zur näheren Kenntniss des Leithakalkes, namentlich der vegetabilischen Einschlüsse und der Bildungsgeschichte desselben. Denkschriften der Kaiserlichen Akademie der Wissenschaften [Wein], Mathematisch-naturwissenschaftliche Klasse, 14: 13–35.
  • Vinogradova, K.L. (2010). Taxonomic review of the Corallinales (Rhodophyta) in the northern Russian seas. Botanicheskii Zhurnal (St. Petersburg), 95: 667–681.
  • Walvoord, M.A. & Striegl, R.G. (2007). Increase groundwater to stream discharge fom permafrost thawing in the Yukon River Basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34: L12402.
  • Wassmann, P., Duarte, C.M., Agustí, S. & Sejr, M.K. (2011). Footprints of climate change in the Arctic marine ecosystem. Global Change Biology, 17: 1235–1249.
  • Williams, B., Chan, P.T.W., Halfar, J., Hargan, K. & Adey, W. (2020). Arctic crustose coralline alga resilient to recent environmental change. Limnology and Oceanography. (in press). doi: https://doi.org/10.1002/lno.11640.
  • Woelkerling, W.J. (1993). Type collections of Corallinales (Rhodophyta) in the Foslie Herbarium (TRH). Gunneria, 67: 1–289.
  • Woelkerling, W.J., Gustavsen, G., Myklebost, H.E., Prestø, T. & Såstad, S.M. (2005). The coralline red algal herbarium of Mikael Foslie: revised catalogue with analyses. Gunneria, 77: 1–625.
  • Woelkerling, W.J. & Verheij, E. (1995). Type collections of nongeniculate corallines (Rhodophyta) in the Rijksherbarium (L), Leiden University, The Netherlands. Blumea, 40: 33–90.
  • Wynne, M.J. (1995). F. R. Kjellman. Phycological Newsletter, 31: 2–3, available at www.psaalgae.org.
  • Yoon, S. H., Hackett, J. D. & Bhattacharya, D. (2002). A single origin of the peridinin- and fucoxanthin- containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences, 99: 11724–11729.
  • Zinova, A.D. (1955). Opredelitel burykh vodoroslej severnykh morej SSSR [Determination Book of the Red Algae of the Northern Seas of the USSR]. Akad. Nauk SSSR, Moscow & Leningrad.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.