408
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparing pulse amplitude modulated (PAM) fluorometry with radiocarbon technique for determination of inorganic carbon fixation in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta)

ORCID Icon, , , , , & show all

References

  • Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A. & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139: 149–154.
  • Babin, M., Therriault, J.C., Legendre, L., Nieke, B., Reuter, R. & Condal, A. (1995). Relationship between the maximum quantum yield of carbon fixation and the minimum quantum yield of chlorophyll a in vivo fluorescence in the Gulf of St. Lawrence. Limnology and Oceanography, 40: 956–968.
  • Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59: 89–113.
  • Balan, R. & Suraishkumar, G.K. (2014). Simultaneous increases in specific growth rate and specific lipid content of Chlorella vulgaris through UV-induced reactive species. Biotechnology Progress, 30: 291–299.
  • Barranguet, C. & Kromkamp, J. (2000). Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Marine Ecology Progress Series, 204: 39–52.
  • Behrenfeld, M.J., Prasil, O., Babin, M. & Bruyant, F. (2004). In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. Journal of Phycology, 40: 4–25.
  • Beyerinck, M.W. (1890). Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung, 47: 725–785.
  • Bhola, V.K., Swalaha, F.M., Nasr, M., Kumari, S. & Bux, F. (2016). Physiological responses of carbon-sequestering microalgae to elevated carbon regimes. European Journal of Phycology, 51: 401–412.
  • Bišová, K. & Zachleder, V. (2014). Cell-cycle regulation in green algae dividing by multiple fission. Journal of Experimental Botany, 65: 2585–2602.
  • Bray, G.A. (1960). A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analytical Biochemistry, 1: 279–285.
  • Cardol, P., Forti, G. & Finazzi, G. (2011). Regulation of electron transport in microalgae. Biochimica et Biophysica Acta, 1807: 912–918.
  • Chang, H.-X., Huang, Y., Fu, Q., Liao, Q. & Zhu, X. (2016). Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresource Technology, 206: 231–238.
  • Clément-Larosière, B., Lopes, F., Gonçalves, A., Taidi, B., Benedetti, M., Minier, M. & Pareau, D. (2014). Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Engineering in Life Sciences, 14: 509–519.
  • Cosgrove, J. & Borowitzka, M.A. (2010). Chlorophyll fluorescence terminology: an introduction. In Chlorophyll a fluorescence in aquatic sciences: methods and applications (Suggett, D.J., Prášil, O. & Borowitzka, M.A., editors), 1–17. Springer Netherlands, Dordrecht.
  • Cuaresma Franco, M., Buffing, M.F., Janssen, M., Vílchez Lobato, C. & Wijffels, R.H. (2012). Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology, 24: 693–699.
  • de Morais, M.G. & Costa, J.A.V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29: 1349–1352.
  • Dring, M.J. & Jewson, D.H. (1982). What does 14C uptake by phytoplankton really measure? A theoretical modelling approach. Proceedings of the Royal Society of London. Series B. Biological Sciences, 214: 351–368.
  • Dubinsky, Z., Falkowski, P.G. & Wyman, K. (1986). Light harvesting and utilization by phytoplankton. Plant and Cell Physiology, 27: 1335–1349.
  • Falkowski, P.G. & Raven, J.A. (2007). Aquatic Photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ.
  • Fan, L.-H., Zhang, Y.-T., Cheng, L.-H., Zhang, L., Tang, D.-S. & Chen, H.-L. (2007). Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chemical Engineering & Technology, 30: 1094–1099.
  • Farrelly, D.J., Everard, C.D., Fagan, C.C. & McDonnell, K.P. (2013). Carbon sequestration and the role of biological carbon mitigation: a review. Renewable and Sustainable Energy Reviews, 21: 712–727.
  • Figueroa, F.L., Jerez, C.G. & Korbee, N. (2013). Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Latin American Journal of Aquatic Research, 41: 801–819.
  • Flameling, I.A. & Kromkamp, J. (1998). Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnology and Oceanography, 43: 284–297.
  • García-Cubero, R., Moreno-Fernández, J. & García-González, M. (2018). Potential of Chlorella vulgaris to abate flue gas. Waste and Biomass Valorization, 9: 2015–2019.
  • Gargas, E. (1975). A Manual for Phytoplankton Primary Production Studies in the Baltic. The Baltic Marine Biologists, Hørsholm.
  • Geider, R.J. & Osborne, B.A. (1991). Algal Photosynthesis: The Measurement of Algal Gas Exchange. Chapman & Hall, New York.
  • Genty, B., Briantais, J.-M. & Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) – General Subjects, 990: 87–92.
  • Gilbert, M., Wilhelm, C. & Richter, M. (2000). Bio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (P-I) curves in four representative phytoplankton species. Journal of Plant Physiology, 157: 307–314.
  • Goto, N., Miyazaki, H., Nakamura, N., Terai, H., Ishida, N. & Mitamura, O. (2008). Relationships between electron transport rates determined by pulse amplitude modulated (PAM) chlorophyll fluorescence and photosynthetic rates by traditional and common methods in natural freshwater phytoplankton. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 172: 121–134.
  • Halsey, K.H., Milligan, A.J. & Behrenfeld, M.J. (2010). Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. Photosynthesis Research, 103: 125–137.
  • Halsey, K.H., Milligan, A.J. & Behrenfeld, M.J. (2011). Linking time-dependent carbon-fixation efficiencies in Dunaliella tertiolecta (Chlorophyceae) to underlying metabolic pathways. Journal of Phycology, 47: 66–76.
  • Hancke, K., Dalsgaard, T., Sejr, M.K., Markager, S. & Glud, R.N. (2015). Phytoplankton productivity in an Arctic fjord (West Greenland): estimating electron requirements for carbon fixation and oxygen production. PLoS ONE, 10: e0133275.
  • Hartig, P., Wolfstein, K., Lippemeier, S. & Colijn, F. (1998). Photosynthetic activity of natural microphytobenthos populations measured by fluorescence (PAM) and 14C-tracer methods: a comparison. Marine Ecology Progress Series, 166: 53–62.
  • Henley, W.J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology, 29: 729–739.
  • Hoppe, C.J.M., Holtz, L.-M., Trimborn, S. & Rost, B. (2015). Ocean acidification decreases the light-use efficiency in an Antarctic diatom under dynamic but not constant light. New Phytologist, 207: 159–171.
  • Huang, C.H. & Tan, C.S. (2014). A review: CO2 utilization. Aerosol and Air Quality Research, 14: 480–499.
  • Hughes, D.J., Campbell, D.A., Doblin, M.A., Kromkamp, J.C., Lawrenz, E., Moore, C.M., Oxborough, K., Prášil, O., Ralph, P.J., Alvarez, M.F. & Suggett, D.J. (2018). Roadmaps and detours: active chlorophyll-a assessments of primary productivity across marine and freshwater systems. Environmental Science and Technology, 52: 12039–12054.
  • Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167: 191–194.
  • Jespersen, A.-M. (1994). Comparison of 14CO2 and 12CO2 uptake and release rates in laboratory cultures of phytoplankton. Oikos, 69: 460–468.
  • Johnsen, G. & Sakshaug, E. (2007). Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry 1. Journal of Phycology, 43: 1236–1251.
  • Juneau, P., El Berdey, A. & Popovic, R. (2002). PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Archives of Environmental Contamination and Toxicology, 42: 155–164.
  • Juneau, P., Green, B.R. & Harrison, P.J. (2005). Simulation of Pulse-Amplitude-Modulated (PAM) fluorescence: limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica, 43: 75–83.
  • Juneau, P. & Harrison, P.J. (2005). Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochemistry and Photobiology, 81: 649–653.
  • Kao, C.Y., Chen, T.Y., Chang, Y.B., Chiu, T.W., Lin, H.Y., Chen, C.D., Chang, J.S. & Lin, C.S. (2014). Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technology, 166: 485–493.
  • Ko, E., Park, J., Gorbunov, M. & Yoo, S. (2019). Uncertainties in variable fluorescence and 14C methods to estimate primary production: a case study in the coastal waters off the Korean peninsula. Marine Ecology Progress Series, 627: 13–31.
  • Kolber, Z., Zehr, J. & Falkowski, P. (1988). Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 88: 923–929.
  • Kromkamp, J. & Peene, J. (1999). Estimation of phytoplankton photosynthesis and nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. Aquatic Ecology, 33: 101–104.
  • Kromkamp, J.C., Dijkman, N.A., Peene, J., Simis, S.G.H. & Gons, H.J. (2008). Estimating phytoplankton primary production in Lake Ijsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. European Journal of Phycology, 43: 327–344.
  • Kromkamp, J.C. & Forster, R.M. (2003). The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. European Journal of Phycology, 38: 103–112.
  • Lawrenz, E., Silsbe, G., Capuzzo, E., Ylöstalo, P., Forster, R.M., Simis, S.G.H., Prášil, O., Kromkamp, J.C., Hickman, A.E., Moore, C.M., Forget, M.H., Geider, R.J. & Suggett, D.J. (2013). Predicting the electron requirement for carbon fixation in seas and oceans. PLoS ONE, 8: e58137.
  • Lefebvre, S., Mouget, J.-L., Loret, P., Rosa, P. & Tremblin, G. (2007). Comparison between fluorimetry and oximetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions. Journal of Photochemistry and Photobiology B: Biology, 86: 131–139.
  • Ley, A.C. & Mauzerall, D.C. (1982). Absolute absorption cross-sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 680: 95–106.
  • Lombardi, A.T. & Maldonado, M.T. (2011). The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynthesis Research, 108: 77–87.
  • Mackereth, F.J.H., Heron, J. & Talling, J.F. (1978). Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association Scientific Publication, Ambleside.
  • Marra, J. (2009). Net and gross productivity: weighing in with 14C. Aquatic Microbial Ecology, 56: 123–131.
  • Masojídek, J., Vonshak, A. & Torzillo, G. (2010). Chlorophyll fluorescence applications in microalgal mass cultures. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications ( Suggett, D.J., Prášil, O. & Borowitzka, M.A., editors), 277–292. Springer Netherlands, Dordrecht.
  • Maxwell, K. & Johnson, G. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51: 659–668.
  • Melis, A. (1989). Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 323: 397–409.
  • Melis, A. (1998). Photostasis in plants: mechanisms and regulation. In Photostasis and Related Phenomena (Williams, T.P. & Thistle, A.B., editors), 207–221. Springer, Boston.
  • Milligan, A.J., Halsey, K.H. & Behrenfeld, M.J. (2015). Advancing interpretations of 14C-uptake measurements in the context of phytoplankton physiology and ecology. Journal of Plankton Research, 37: 692–698.
  • Morris, E., Forster, R., Peene, J. & Kromkamp, J. (2008). Coupling between photosystem II electron transport and carbon fixation in microphytobenthos. Aquatic Microbial Ecology, 50: 301–311.
  • Morris, E.P. & Kromkamp, J.C. (2003). Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium). European Journal of Phycology, 38: 133–142.
  • Müller, P., Li, X.P. & Niyogi, K.K. (2001). Non-photochemical quenching: a response to excess light energy. Plant Physiology, 125: 1558–1566.
  • Murchie, E.H. & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64: 3983–3998.
  • Napoléon, C. & Claquin, P. (2012). Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach. PLoS ONE, 7: e40284.
  • Napoléon, C., Raimbault, V. & Claquin, P. (2013). Influence of nutrient stress on the relationships between PAM measurements and carbon incorporation in four phytoplankton species. PLoS ONE, 8: e66423.
  • Oxborough, K. & Baker, N.R. (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynthesis Research, 54: 135–142.
  • Pei, S. & Laws, E.A. (2013). Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton. Deep Sea Research Part I: Oceanographic Research Papers, 82: 1–9.
  • Perkins, R., Oxborough, K., Hanlon, A., Underwood, G. & Baker, N. (2002). Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Marine Ecology Progress Series, 228: 47–56.
  • Perkins, R., Underwood, G., Brotas, V., Snow, G., Jesus, B. & Ribeiro, L. (2001). Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Marine Ecology Progress Series, 223: 101–112.
  • Perkins, R.G., Kromkamp, J.C., Serôdio, J., Lavaud, J., Jesus, B., Mouget, J.L., Lefebvre, S. & Forster, R.M. (2010). The application of variable chlorophyll fluorescence to microphytobenthic biofilms. In Chlorophyll a fluorescence in aquatic sciences: methods and applications ( Suggett, D.J., Prášil, O. & Borowitzka, M.A., editors), 237–275. Springer Netherlands, Dordrecht.
  • Peterson, B.J. (1978). Radiocarbon uptake: its relation to net particulate carbon production. Limnology and Oceanography, 23: 179–184.
  • Peterson, B.J. (1980). Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. Annual Review of Ecology and Systematics, 11: 359–385.
  • Platt, T., Gallegos, C. & Harrison, W. (1980). Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38: 687–701.
  • R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/; searched on 18 December 2020.
  • Ralph, P.J. & Gademann, R. (2005). Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 82: 222–237.
  • Richardson, K., Samuelsson, G. & Hällgren, J.-E. (1984). The relationship between photosynthesis measured by 14C incorporation and by uptake of in organic carbon in unicellular algae. Journal of Experimental Marine Biology and Ecology, 81: 241–250.
  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111: 1–61.
  • Ritchie, R.J. (2008). Fitting light saturation curves measured using modulated fluorometry. Photosynthesis Research, 96: 201–215.
  • Sadeghizadeh, A., Farhad Dad, F., Moghaddasi, L. & Rahimi, R. (2017). CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresource Technology, 243: 441–447.
  • Sathyendranath, S., Lazzara, L. & Prieur, L. (1987). Variationsin the spectral values of specific absorption of phytoplankton. Limnology and Oceanography, 32: 403–415.
  • Savidge, G. (1978). Variationsin the progress of 14C uptake as a source of error in estimates of primary production. Marine Biology, 49: 295–301.
  • Schreiber, U. (2004). Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (Papageorgiou, G.C. & Govindjee, editors), 279–319. Springer Netherlands, Dordrecht.
  • Shoaf, W.T. & Lium, B.W. (1976). Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnology and Oceanography, 21: 926–928.
  • Steemann Nielsen, E. (1952). The use of radio-active carbon (C14) for measuring organic production in the sea. ICES Journal of Marine Science, 18: 117–140.
  • Suggett, D.J., MacIntyre, H.L. & Geider, R.J. (2004). Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnology and Oceanography: Methods, 2: 316–332.
  • Suggett, D.J., Oxborough, K., Baker, N.R., MacIntyre, H.L., Kana, T.M. & Geider, R.J. (2003). Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. European Journal of Phycology, 38: 371–384.
  • Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A. & Soccol, C.R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101: 5892–5896.
  • Underwood, G.J.C. & Kromkamp, J. (1999). Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research, 29: 93–153.
  • Vernet, M. & Smith, R.C. (2007). Measuring and modeling primary production in marine pelagic ecosystems. In Principles and Standards for Measuring Primary Production (Fahey, T.J. & Knapp, A.K., editors), 142–174. Oxford University Press, Oxford.
  • Vonshak, A. & Torzillo, G. (2004). Environmental stress physiology. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Richmond, A., editor), 57–82. Blackwell Publishing, Oxford.
  • Warner, M.E., Lesser, M.P. & Ralph, P.J. (2010). Chlorophyll fluorescence in reef building corals. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications (Suggett, D.J., Prášil, O. & Borowitzka, M.A., editors), 209–222. Springer Netherlands, Dordrecht.
  • White, S., Anandraj, A. & Bux, F. (2011). PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresource Technology, 102: 1675–1682.
  • Zhao, B. & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31: 121–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.