435
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Geography and climate drive the distribution and diversification of the cosmopolitan cyanobacterium Microcoleus (Oscillatoriales, Cyanobacteria)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 396-405 | Received 15 Apr 2021, Accepted 29 Oct 2021, Published online: 12 Jan 2022

References

  • Abouheif, E. (1999). A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research, 1: 895–909.
  • Aguilar, M., Fiore-Donno, A.M., Lado, C. & Cavalier-Smith, T. (2014). Using environmental niche models to test the ‘everything is everywhere’ hypothesis for Badhamia. ISME Journal, 8: 737–745.
  • Baas-Becking, L.G.M. (1934). Geobiologie of Inleiding tot de Milieukunde. W. P. Van Stockum & Zoon, The Hague.
  • Bahl, J., Lau, M.C.Y., Smith, G.J.D., Vijaykrishna, D., Cary, S.C., Lacap, D.C., Lee, C.K., Papke, R.T., Warren-Rhodes, K.A., Wong, F.K.Y., McKay, C.P. & Pointing, S.B. (2011). Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications, 2: 1–6.
  • Bates, S.T., Clemente, J.C., Flores, G.E., Walters, W.A., Parfrey, L.W., Knight, R. & Fierer, N. (2013). Global biogeography of highly diverse protistan communities in soil. ISME Journal, 7: 652–659.
  • Blomberg, S.P., Garland Jr., T. & Ives, A.R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57: 717–745.
  • Boyer, S.L., Johansen, J.R., Flechtner, V.R. & Howard, G.L. (2002). Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S–23S ITS region. Journal of Phycology, 38: 1222–1235.
  • Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reisser, W. & Weber, B. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57: 229–247.
  • Cadillo-Quiroz, H., Didelot, X., Held, N.L., Herrera, A., Darling, A., Reno, M.L., Krause, D.J. & Whitaker, R.J. (2012). Patterns of gene flow define species of thermophilic Archaea. PLoS Biology, 10: e1001265.
  • Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25: 1972–1973.
  • Chase, A.B., Karaoz, U., Brodie, E.L., Gomez-Lunar, Z., Martiny, A.C. & Martiny, J.B.H. (2017). Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits. MBio, 8: e01809–17.
  • Crisp, M.D. & Cook, L.G. (2012). Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes?. New Phytologist, 196: 681–694.
  • Curren, E. & Leong, S.C.Y. (2020). Natural and anthropogenic dispersal of cyanobacteria: a review. Hydrobiologia, 847: 2801–2822.
  • Dvořák, P., Hašler, P. & Poulíčková, A. (2012). Phylogeography of the Microcoleus vaginatus (cyanobacteria) from three continents – a spatial and temporal characterization. PLoS ONE, 7: e40153.
  • Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D.A. & Papini, A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation, 24: 739–757.
  • Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 1792–1797.
  • Fenchel, T. (2003). Biogeography for bacteria. Science, 301: 925–926.
  • Fernandes, V.M.C., Machado de Lima, N.M., Roush, D., Rudgers, J., Collins, S.L. & Garcia‐Pichel, F. (2018). Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environmental Microbiology, 20: 259–269.
  • Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302–4315.
  • Fierer, N. (2008). Microbial biogeography: patterns in microbial diversity across space and time. In Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back (Zengler, K., editor), 9–115. American Society of Microbiology, Washington, DC.
  • Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296: 1061–1063.
  • Flombaum, P., Gallegos, J.L., Gordillo, R.A., Rincón, J., Zabala, L.L., Jiao, N., Karl, D.M., Li, W.K.W., Lomas, M.W., Veneziano, D., Vera, C.S., Vrugt, J.A. & Martiny, A.C. (2013). Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences USA, 110: 9824–9829.
  • Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica, 45: 111–136.
  • Fontaneto, D. & Brodie, J. (2011). Why biogeography of microorganisms? In Biogeography of Microscopic Organisms: Is Everything Small Everywhere? (Fontaneto, D., editor), 3–10. Cambridge University Press, Cambridge.
  • Garcia-Pichel, F. & Wojciechowski, M.F. (2009). The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE, 4: e7801.
  • Garcia-Pichel, F., Prufert-Bebout, L. & Muyzer, G. (1996). Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Applied and Environmental Microbiology, 62: 3284–3291.
  • Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R.M. (2013). Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science, 340: 1574–1577.
  • Gomont, M. (1892). Monographie des Oscillariées (Nostocacées homocystées). Annales des Sciences Naturelles, Botanique, Série, 7: 263–368.
  • González-Rocha, G., Muñoz-Cartes, G., Canales-Aguirre, C.B., Lima, C.A., Domínguez-Yévenes, M., Bello-Toledo, H. & Hernández, C.E. (2017). Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): a phylogenetic analysis perspective. PLoS ONE, 12: e0179390.
  • Gundlapally, S.R. & Garcia-Pichel, F. (2006). The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microbial Ecology, 52: 345–357.
  • Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C. & Martiny, J.B.H. (2012). Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology, 10: 497–506.
  • Hašler, P., Dvořák, P., Johansen, J.R., Kitner, M., Ondřej, V. & Poulíčková, A. (2012). Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea, 12: 341–356.
  • Hijmans, R.J. (2020). Geographic Data Analysis and Modeling [R package raster version 3.3-13]. Retrieved from https://CRAN.R-project.org/package=raster.
  • Hijmans, R.J., Williams, E., Vennes, C. & Hijmans M. (2017). Package ‘geosphere’. Retrieved from https://CRAN.R-project.org/package=geosphere.
  • Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35: 518–522.
  • Hunt, D.E., David, L.A., Gevers, D., Preheim, S.P., Alm, E.J. & Polz, M.F. (2008). Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science, 320: 1081–1085.
  • Jombart, T., Balloux, F. & Dray, S. (2010). Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics, 26: 1907–1909.
  • Kashtan, N., Roggensack, S.E., Rodrigue, S., Thompson, J.W., Biller, S.J., Coe, A., Ding, H., Marttinen, P., Malmstrom, R.R., Stocker, R., Follows, M.J., Stepanauskas, R. & Chisholm, S.W. (2014). Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science, 344: 416–420.
  • Keck, F., Rimet, F., Bouchez, A. & Franc, A. (2016). Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution, 6: 2774–2780.
  • Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil: Oscillatoriales. In Süsswasserflora von Mitteleuropa (Büdel, B., Gärdner, G., Krienitz, L. & Schagerl, M., editors), 759. Elsevier, Munich.
  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28: 1–26. Retrieved from https://CRAN.R-project.org/package=caret.
  • Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870–1874.
  • Larkin, A.A., Blinebry, S.K., Howes, C., Lin, Y., Loftus, S.E., Schmaus, C.A., Zinser, E.R. & Johnson, Z.I. (2016). Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME Journal, 10: 1555–1567.
  • Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30: 3276–3278.
  • Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., López-Bautista, J.M., Zuccarello, G.C. & De Clerck, O. (2014). DNA-based species delimitation in algae. European Journal of Phycology, 49: 179–196.
  • Losos, J.B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11: 995–1003.
  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209–220.
  • Miller, S.R., Castenholz, R.W. & Pedersen, D. (2007). Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Applied and Environmental Microbiology, 73: 4751–4759.
  • Moore, J.G. (1985). Structure and eruptive mechanisms at Surtsey Volcano, Iceland. Geological Magazine, 122: 649–661.
  • Moran, P.A.P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37: 17–23.
  • Muñoz-Martín, M.Á., Becerra‐Absalón, I., Perona, E., Fernández‐Valbuena, L., Garcia‐Pichel, F. & Mateo, P. (2019). Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytologist, 221: 123–141.
  • Narwani, A., Alexandrou, M.A., Herrin, J., Vouaux, A., Zhou, C., Oakley, T.H. & Cardinale, B.J. (2015). Common ancestry is a poor predictor of competitive traits in freshwater green algae. PLoS ONE, 10: e0137085.
  • Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32: 268–274.
  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D. & Wagner, H. (2016). Vegan: Community ecology package. Retrieved from https://CRAN.R-project.org/package=vegan.
  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401: 877–884.
  • Pietrasiak, N., Mühlsteinová, R., Siegesmund, M.A. & Johansen, J.R. (2014). Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia, 53: 529–541.
  • Reno, M.L., Held, N.L., Fields, C.J., Burke, P.V. & Whitaker, R.J. (2009). Biogeography of the Sulfolobus islandicus pan-genome. Proceedings of the National Academy of Sciences USA, 106: 8605–8610.
  • Revell, L.J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217–223.
  • Ribeiro, K.F., Ferrero, A.P., Duarte, L., Turchetto-Zolet, A.C. & Crossetti, L.O. (2020). Comparative phylogeography of two free‐living cosmopolitan cyanobacteria: insights on biogeographic and latitudinal distribution. Journal of Biogeography, 47: 1106–1118.
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6: 461–464.
  • Sharma, N.K. & Singh, S. (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50: 468–473.
  • Siegesmund, M.A., Johansen, J.R., Karsten, U. & Friedl, T. (2008). Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. Journal of Phycology, 44: 1572–1585.
  • Škaloud, P. & Rindi, F. (2013). Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). Journal of Eukaryotic Microbiology, 60: 350–362.
  • Staub, R. (1961). Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. Schweizerische Zeitschrift für Hydrologie, 23: 82–198.
  • Steven, B., Kuske, C.R., Gallegos-Graves, L.V., Reed, S.C. & Belnap, J. (2015). Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Applied and Environmental Microbiology, 81: 7448–7459.
  • Strunecký, O., Komárek, J., Johansen, J., Lukešová, A. & Elster, J. (2013). Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). Journal of Phycology, 49: 1167–1180.
  • Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512–526.
  • Uyeda, J.C., Harmon, L.J. & Blank, C.E. (2016). A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS ONE, 11: e0162539.
  • Van Gremberghe, I., Leliaert, F., Mergeay, J., Vanormelingen, P., Van der Gucht, K., Debeer, A.E., Lacerot, G., Meester, L.D. & Vyverman, W. (2011). Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE, 6: e19561.
  • Whitaker, R.J., Grogan, D.W. & Taylor, J.W. (2003). Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science, 301: 976–978.
  • Yu, Y., Harris, A.J., Blair, C. & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87: 46–49.
  • Yu, Y., Blair, C. & He, X. (2020). RASP 4: ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution, 37: 604–606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.