317
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Photosynthetic traits of the ubiquitous and prolific macroalga Ulva (Chlorophyta): a review

Pages 390-398 | Received 05 Apr 2022, Accepted 12 Nov 2022, Published online: 20 Dec 2022

References

  • Axelsson, L., Carlberg, S. & Ryberg, H. (1989). Adaptations by macroalgae to low carbon availability. I. A buffer system in Ascophyllum nodosum associated with photosynthesis. Plant, Cell and Environment, 12: 765–770.
  • Axelsson, L., Ryberg, H. & Beer, S. (1995). Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant, Cell and Environment, 18: 439–445.
  • Axelsson, L., Larsson, C. & Ryberg, H. (1999). Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant, Cell and Environment, 22: 969–978.
  • Beer, S. & Eshel, A. (1983a). Photosynthesis of Ulva sp. II: Utilization of CO2 and HCO3− when submerged. Journal of Experimental Marine Biology and Ecology, 70: 99–106.
  • Beer, S. & Eshel, A. (1983b). Photosynthesis of Ulva sp. I: Effects of desiccation when exposed to air. Journal of Experimental Marine Biology and Ecology, 70: 91–97.
  • Beer, S. & Israel, A. (1986). Photosynthesis of Ulva sp. III. O2 effects, carboxylation activity, and the CO2 incorporation pattern. Plant Physiology, 81: 937–938.
  • Beer, S. & Shragge, B. (1987). Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta). Journal of Phycology, 23: 580–584.
  • Beer, S. & Israel, A. (1990). Photosynthesis of Ulva fasciata. IV. pH, carbonic anhydrase and inorganic carbon conversions in the unstirred layer. Plant, Cell and Environment, 13: 555–560.
  • Beer, S., Israel, A., Drechsler, Z. & Cohen, Y. (1990). Photosynthesis in Ulva fasciata. V. Evidence for an inorganic carbon concentrating system, and ribulose-1,5-bisphophate carboxylase/oxygenase CO2 kinetics. Plant Physiology, 94: 1542–1546.
  • Beer, S., Larsson, C., Poryan, O. & Axelsson, L. (2000). Photosynthetic rates of Ulva (Chlorophyta) measured by pulse-amplitude modulated (PAM) fluorometry. European Journal of Phycology, 35: 69–74.
  • Beer, S., Björk, M. & Beardall, J. (2014). Photosynthesis in the Marine Environment. Wiley-Blackwell, Oxford.
  • Bidwell, R.G.S. & McLachlan, J. (1985). Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration. Journal of Experimental Marine Biology and Ecology, 86: 15–46.
  • Bischof, K., Peralta, G., Krabs, B., van de Poll, W.H., Perez-Llorens, J.L. & Breeman, A.M. (2002). Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain. Journal of Experimental Botany, 53: 2411–2421.
  • Björk, M., Haglund, K., Ramazanov, Z. & Pedersen, M. (1992). Inorganic-carbon assimilation in the green seaweed Ulva rigida C. Ag. (Chlorophyta). Planta, 187: 152–156.
  • Björk, M., Haglund, K., Ramazanov, Z. & Pedersen, M. (1993). Inducible mechanisms for HCO3− utilization and repression of protoplasts and thalli of three species of Ulva (Chlorophyta). Journal of Phycology, 29: 166–173.
  • Björk, M., Axelsson, L. & Beer, S. (2004). Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Marine Ecology Progress Series, 284: 109–116.
  • Blinks, L.R. (1963). The effect of pH upon photosynthesis of littoral marine algae. Protoplasma, 57: 126–136.
  • Carr, H. & Björk, M. (2003). A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical Ulva (Chlorophyceae) species under different light and inorganic carbon conditions. Journal of Phycology, 39: 1125–1131.
  • Carr, H. & Björk, M. (2007). Parallel changes in non-photosynthetic quenching properties, photosynthesis and D1 levels at sudden, prolonged irradiance exposure and Ulva fasciata Delile. Journal of Photocheistry and Photobiology B: Biology, 87: 18–26.
  • Colman, B. (1984). The effect of temperature and oxygen on the CO2 compensation point of the marine alga Ulva lactuca. Plant, Cell and Environment, 7: 619–621.
  • Cook, C.M. & Colman, B. (1987). Some characteristics of photosynthetic inorganic carbon uptake of a marine macrophytic red alga. Plant Cell and Environment, 10: 275–278.
  • Cordat, E. & Casey, J.R. (2009). Bicarbonate transport in cell physiology and disease. Biochemical Journal, 417: 423–439.
  • Cornwall, C.E., Revill, A.T., Hall-Spencer, J.M., Milazzo, M., Raven, J.A. & Hurd, C.L. (2012). Carbon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48: 137–144.
  • Coughlan, S. & Tattersfield, D. (1977). Photoresiration in larger littoral algae. Botanica Marina, 20: 265–266.
  • De Clerck, O., Kao, S.M., Bogaert, K.A., Blomme, J., Foflonker, F., Kwantes, M., Vancaester, E., Vanderstraeten, L., Aydogdy, E., Boesger, J., Califano, G., Charrier, B., Clewes, L., Del Cortona, A., D’Hondt, S., Fernandez-Pozo, N., Gachon, C.M., Hanikenne, M., Lattermann, L., Leliaert, F., Liu, X., Maggs, C.A., Popper, Z.A., Raven, J.A., Van Bel, M., Wilhelmsson, P.K.I., Bhattacharya, D., Coates, J.C., Rensing, S.A., Van Der Straeten, D., Vardi, A., Sterck, L., Vandepoele, K., Van de Peer, Y., Wichard, T. & Bothwell, J.H. (2018). Insights into the evolution of multicellularity from the sea lettuce genome. Current Biology, 28: 2921–2933.
  • Drechsler, Z. & Beer, S. (1991). Utilization of inorganic carbon by Ulva lactuca. Plant Physiology, 97: 1439–1444.
  • Drechsler, Z., Sharkia, R., Cabantchik, I.Z. & Beer, S. (1993). The relationship of arginine groups to photosynthetic HCO3− uptake in Ulva sp. mediated by a putative anion exchanger. Planta 191: 34–40.
  • Drechsler, Z., Sharkia, R., Cabantchik, Z.I. & Beer, S. (1994). The relationship of arginine groups to photosynthetic HCO3– uptake in Ulva sp. mediated by a putative anion exchanger. Planta, 194: 250–255.
  • Figueroa, F.L., Nygård, C., Ekelund, N. & Gomez, I. (2003). Photobiological characteristics and photosynthetic UV responses in two Ulva species (Chlorophyta) from southern Spain. Journal of Photochemistry and Photobiology. B. Biology, 72: 35–44.
  • Franklin, L.A., Levavasseur, G., Osmond, C.B., Henley, W.J. & Ramus, J. (1992). Two components of onset and recovery during photoinhibition of Ulva rotundata. Planta, 186: 399–408.
  • Giordano, M. & Maberly, S.C. (1989). Distribution of carbonic anhydrase in British marine macroalgae. Oecologia, 81: 534–539.
  • Guiry, M.D. & Guiry, G.M. (2022). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
  • Han, Y.S. & Han, T. (2005). UV-B induction of UV-B protection in Ulva pertusa (Chlorophyta). Journal of Phycology, 41: 523–530.
  • Han, T., Han, Y.S., Kain, J.M. & Häder, D.P. (2003). Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). Journal of Phycology, 39: 712–721.
  • Hayden, H.S., Blomster, J., Maggs, C.A., Silva, P.C., Stanhop, M.J. & Waaland, J.R. (2003). Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology, 380: 277–294.
  • Henley, W.J., Levavasseur, G., Franklin, L.A., Osmond, C.B. & Ramus, J. (1991a). Photoacclimation and photoinhibition in Ulva rotundata as influenced by nitrogen availability. Planta, 184: 235–243.
  • Henley, J.W., Levavasseur, G., Franklin, L.A., Lindley, S.T., Ramus, J. & Osmond, C.B. (1991b). Diurnal responses of photosynthesis and fluorescence in Ulva rotundata acclimated to sun and shade in outdoor culture, Marine Ecology Progress Series, 75: 19–28.
  • Iñiguez, C., Galmés, J. & Gordillo, F.J.L. (2019). Rubisco caboxylation kinetics and inorganic carbon utilization in polar versus cold-temperate seaweeds. Journal of Experimental Botany, 70: 1283–1297.
  • Israel, A. & Beer, S. (1992). Photosynthetic carbon acquisition in the red alga Gracilaria conferta. II. Rubisco carboxylase kinetics carbonic anhydrase and HCO3− uptake. Marine Biology, 112: 697–700.
  • Johnston, A.M., Maberly, S.C. & Raven, J.A. (1992). The acquisition of inorganic carbon by four red macroalgae from different habitats. Oecologia, 92: 317–326.
  • Joliffe, E.A. & Tregunna, E.B. (1970). Studies of HCO3− ion uptake during photosynthesis in benthic marine algae. Phycologia, 9: 293–303.
  • Joshi, G.V., Karekar, M.D., Gowda, C.A. & Bhosale, L. (1974). Photosynthetic carbon metabolism and carboxylating enzymes in algae and mangrove under saline conditions. Photosynthetica, 8: 51–52.
  • Kang, I.J. & Kim, K.Y. (2016). Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae, 31: 49–59.
  • Karekar, M.D. & Joshi, G.V. (1973). Photosynthetic carbon metabolism in marine algae. Botanica Marina, 16: 216–220.
  • Kerby, N.W. & Raven, J.A. (1985). Transport and fixation of inorganic carbon by marine algae. Advances in Botanical Research, 2: 71–122.
  • Kremer, B.P. & Küppers, U. (1977). Carboxylating enzymes and pathway of photosynthetic carbon assimilation in different marine algae. Evidence for the C4 pathway? Planta, 133: 191–196.
  • Li, G., Mai, G., Zhang, J., Ni, G., Shi, X., Tan, Y. & Zou, D. (2021). Rising pCO2 interacts with algal density to reversely alter physiological responses of Gracilaria lemaneiformis and Ulva conglobata. Algal Research, 54: 102231.
  • Link, H.F. (1820). Epistola ad virum celeberrimum Nees ab Esenbeck … de algis aquaticis, in genera disponendis. In Horae physicae berolinenses ( Nees von Esenbeck, C.G.D., eds.), 1–8. Sumtibus Adolphi Marcus, Bonnae [Bonn]. ( Available online at https://www.algaebase.org/search/bibliography/detail/?biblio_id=17117&token=562DF3141412232090YjMI4AA3B9)
  • Linnaeus, C. (1753). Species plantarum, exhibentes plantas rite cognitas ad genera relatas cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Stockholm. ( Available online at https://www.biodiversitylibrary.org/bibliography/669#/summary)
  • Longstaff, B.J., Kildea, T., Runcie, J.W., Cheshire, A., Dennison, W.C., Hurd, C., Kana, T., Raven, J.A. & Larkum, A.W. (2002). An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 74: 281–293.
  • Lundberg, P., Weich, R.G., Jensen, P. & Vogel, H.J. (1989). Phosphorus-91 and nitrogen-14 NMR studies of uptake of phosphorus and nitrogen compounds in the marine macroalga Ulva lactuca. Plant Physiology, 89: 1380–1387.
  • Maberly, S.C. (1990). Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. Journal of Phycology, 26: 439–449.
  • Maberly, S.C. (1992). Carbonate ions appear to neither inhibit nor stimulate use of bicarbonate ions in photosynthesis by Ulva lactuca. Plant, Cell and Environment, 15: 255–260.
  • Maberly, S.C., Raven, J.A. & Johnston, A.M. (1992). Discrimination between 12C and 13C by marine plants. Oecologia, 91: 481–492.
  • Malta, E., Rijstenbil, J.W., Brouwer, P.E.M., Kromkamp, J.C. (2003). Vertical heterogeneity in physiological characteristics of Ulva spp. mats. Marine Biology, 143: 1029–1038.
  • Mercado, J.M., de los Santos, C.B., Lucas Pe´rez-Llorens, J. & Vergara, J.J. (2009). Carbon isotopic fractionation in macroalgae from Cadiz Bay (Southern Spain): Comparison with other bio-geographic regions. Estuarine, Coastal and Shelf Science, 85: 449–458.
  • Miyao, M. (1994). Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of photosystem II. Biochemistry, 16: 9722–9730.
  • Mvungi, E.F., Lyimo, T.J. & Björk, M. (2012). When Zostera marina is intermixed with Ulva, its photosynthesis is reduced by increased pH and lower light, but not by changes in light quality. Aquatic Botany, 102: 44–49.
  • Osmond, C.B., Ramus, J., Levavasseur, G., Franklin, L.A. & Henley, W.J. (1993). Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid. Planta, 190: 97–106.
  • Patil, B.A. & Joshi, G.V. (1970). Photosynthetic studies in Ulva lactuca. Botanica Marina, 13: 111–115.
  • Rasmusson, L.M. & Björk, M. (2014). Determining light suppression of mitochondrial respiration for three temperate marine macrophytes using the Kok method. Botanica Marina, 6: 483–486.
  • Rautenberger, R., Fernandez, P.A., Strittmatter, M., Heesch, S., Cornwall, C.E., Hurd, C.L. & Roleda, M.Y. (2015). Saturating light and not increased carbon dioxide drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecology and Evolution, 5: 874–888.
  • Raven, J.A., Ball, L.A., Beardall, J., Giordano, M. & Maberly, S.C. (2011). Algae lacking CO2 concentrating mechanisms. Canadian Journal of Botany, 83: 879–890.
  • Reiskind, J.B., Beer, S. & Bowes, G. (1989). Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquatic Botany, 34: 131–152.
  • Runcie, J.W., Gurgel, C.F.D. & McDermid, K.J. (2008). In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. European Journal of Phycology, 43: 377–388.
  • Sharkia, R., Beer, S. & Cabantchik, Z.I. (1994). A membrane-located polypeptide of Ulva sp. in HCO3– uptake is recognized by antibodies human red-blood-cell anion-exchange protein. Planta, 194: 247–249.
  • Shpigel, M., Shauli, L., Odintsov, V., Ashkenazi, N. & Ben-Ezra, D. (2018). Ulva lactuca biofilter from a land-based integrated multi trophic aquaculture (IMTA) system as a sole food source for the tropical sea urchin Tripneustes gratilla elatensis. Aquaculture, 496: 221–231.
  • Smith, R.G. & Bidwell, R.G.S. (1989). Mechanisms of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Plant Physiology, 89: 93–99.
  • Stepien, C.C. (2015). Impacts of geography, taxonomy and functional group on inorganic carbon use patterns in marine macrophytes. Journal of Ecology, 103: 1372–1383.
  • Teng, L., Ding, L. & Lu, Q. (2011). Microscopic observation of pyrenoids in oder Ulvales (Chloropohyta) collected from Qingdao coast. Journal of Ocean University of China, 10: 223.
  • Tregunna, E.A. & Thomas, E.A. (1968). Measurement of inorganic carbon and photosynthesis by pCO2 and pH analysis. Canadian Journal of Botany, 46: 481–485.
  • van der Loos, L.M., Schmid, M., Lea, P.P., McGraw, C.M., Britton, D., Revill, A.T., Nichols, P.D. & Hurd, C.L. (2018). Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecology and Evolution, 9: 125–140.
  • Xu, J. & Gao, K. (2012). Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiology, 160: 1762–1769.
  • Yaich, H., Y., Garna, H., Besbes, S., Paquot, M., Blecker, C. & Attia, H. (2011). Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chemistry, 128: 895–901.
  • Zhang, D., Beer, S., Li, H. & Gao, K. (2020). Photosystems I and II in Ulva lactuca are well protected from high incident sunlight. Algal Research, 52: 102094.
  • Zhao, X., Tang, X., Hu, S., Zhong, Y., Qu, T. & Wang, Y. (2019). Photosynthetic response of floating Ulva prolifera to diurnal changes of in-situ environments on the sea surface. Journal of Oceanography and Limnology, 37: 589–599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.