192
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Morphological and molecular investigations shed light on diversity and distribution of Palmariaceae in the north-western Pacific

ORCID Icon, &
Pages 438-456 | Received 31 Jan 2022, Accepted 08 Jan 2023, Published online: 22 Mar 2023

References

  • Artemova, A., Gorbarenko, S., Vasilenko, Yu., Shi X., Liu, Y., & Chen, M.T. (2017). Palaeoceanography changes in the Okhotsk Sea during Late Pleistocene and Holocene according to diatoms. Quaternary International, 459: 175–186.
  • Blinova, E.I. & Vozzhinskaya, V.B. (1974). Algal flora and vegetation in the Shelikhov Bay (the Sea of Okhotsk). Trudi VNIRO, XCIX: 143–153. (In Russian).
  • Bobkov, A.A., Tsepelev, V.Yu. & Shevchenko, G.V. (2004). Anamobaric causing of the Soya Current reversal in the La Perouse Strait. Gerald of SPSU, 2: 99–107. (In Russian).
  • Bringloe, T.T. & Saunders, G.W. (2019). DNA barcoding of the marine macroalgae from Nome, Alaska (Northern Bering Sea) reveals many trans-Arctic species. Polar Biology, 42: 851–864.
  • Bruce, M.G. & Saunders, G.W. (2016). A molecular-assisted investigation of diversity, biogeography and phylogenetic relationships for species of Neoptilota and Ptilota (Wrangeliaceae, Rhodophyta) reported along Canadian coasts. Phycologia, 56: 36–53.
  • Bustamante, D.E., Calderon, M.S. & Mansilla, A. (2022). Molecular analyses reveal a new species of Palmariaceae from sub-Antarctic Chile: Devaleraea yagan sp. nov. (Palmariales, Rhodophyta). Phycologia, 61: 312–320.
  • Chernyavskiy, V.I. (1992). Osobennosti formirovania termiki deyatel’nogo sloya Okhotskogo morya [Features of the formation of thermals of the active layer of the Sea of Okhotsk]. In: Okeanologicheskiye osnovy biologicheskoi produktivnosti severo-zapadnoi chasti Tikhogo Okeana [Oceanological basis of biological production of North-West Pacific]. Vladivostok. P. 90–104.
  • Caragnano, A., Rodondi, G., Basso, D., Peña, V., Le Gall, L. & Rindi, F. (2020). Circumscription of Lithophyllum racemus (Corallinales, Rhodophyta) from the western Mediterranean Sea reveals the species Lithophyllum pseudoracemus sp. nov. Phycologia, 59: 584–597.
  • Demetropoulos, C.L. & Langdon, C.J. (2004). Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: effects of seawater exchange, pH, and inorganic carbon concentration. Aquaculture, 235: 457–470.
  • De Toni, G.B. (1900). Sylloge algarum omnium hucusque cognitarum. Vol. IV. Florideae. Sectio II. pp. [i-iv], 387–774 + 775–776 [Index]. Patavii [Padova]: Sumptibus auctori
  • Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5: 113.
  • Filloramo, G.V. & Saunders G.W. (2016). Molecular-assisted alpha taxonomy of the genus Rhodymenia (Rhodymeniaceae, Rhodymeniales) from Australia reveals overlooked species diversity. European Journal of Phycology, 51: 354–367.
  • Filloramo, G.V. & Saunders, G.W. (2018). Assessment of the order Rhodymeniales (Rhodophyta) from British Columbia using an integrative taxonomic approach reveals overlooked and cryptic species diversity. Botany, 96: 359–383.
  • Golikov, A.N. (1976). Znachenie biogeographicheskogo metoda i uchenia o krupnich geogidrograficheskih kolebaniyah urovnya Mirovogo okeana dlya ponimaniya zakonomernostey evolucii i rasselenia morskoi fauni [The value of the biogeographic method and the doctrine of large geohydrographic fluctuations in the level of the world’s oceans for understanding the patterns of evolution and dispersal of marine fauna]. In: Zoogeografia i sistematika ryb [Zoogeography and systematics of fishes]. Leningrad: ZIN AS USSR. P. 24–36. (In Russian).
  • Griffith, M.K., Schneider, C.W., Wolf, D.I., Saunders, G.W. & Lane, C.E. (2017). Genetic barcoding resolves the historically known red alga Champia parvula from southern New England, USA, as C. farlowii sp. nov. (Champiaceae, Rhodymeniales). Phytotaxa, 302: 77–89.
  • Guiry, M.D. (1982). Devaleraea, a new genus of the Palmariaceae (Rhodophyta) in the North Atlantic and North Pacific. Journal of the Marine Biological Association of the United Kingdom, 62: 1–13.
  • Guiry, M.D. & Guiry, G.M. (2022). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 10 January 2022.
  • Hawkes, M.W. (1985). Palmaria hecatensis sp. nov. (Rhodophyta, Palmariales) from British Columbia and Alaska with a survey of other Palmaria species. Canadian Journal of Botany, 63: 474–482.
  • Hawkes, M.W. & Scagel, R.F. (1986). The marine algae of British Columbia and northern Washington: division Rhodophyta (red algae), class Rhodophyceae, order Palmariales. Canadian Journal of Botany, 64: 1148–1173.
  • Huelsenbeck, J.P. & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755.
  • Jousé, A.P. (1962). Stratigraphic and Paleogeographic Studies in the Northwestern Pacific. Moscow: Nauka. (In Russian).
  • Kapli, T., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis A. & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33: 1630–1638.
  • Klochkova, N.G. (1996). Flora of the algae-macrophytes of Tatar strait Sea of Japan) and features of its formation. Vladivostok (In Russian).
  • Klochkova N.G. (1998). Vodorosli-makrofiti dal’nevostochnykh morei [Algae-macrophytes of the Far-Eastren Seas]: Diss. … Doct. Sci. Vladivostok. 277 p. (In Russian).
  • Klochkova T.A., Belij M.N., & Klochkova N.G. (2013). Seaweeds of the Sea of Okhotsk. In: Belij M.N. Seaweeds of the northern part of the Sea of Okhotsk and their role as a substrate for the herring spawning. Magadan. P. 21–140. (In Russian).
  • Klochkova, N.G., Korolyova, T.N. & Kusidi, A.E. (2009). Marine Algae of Kamchatka and Surrounding Areas. Volume 2. Red seaweeds. Petropavlovsk-Kamchatsky. In Russian.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35: 1547–1549.
  • Kussakin, O.G. (1969). Nekotoriye osobennosti naseleniya osushnoy zoni Kurilskikh ostrovov. In: Referati nauchnikh rabot Instituta Biologii Morya DVF SO AN USSR, 1: 101–104.
  • Kylin, H. & Skottsberg, C. (1919). Zur Kenntnis der subantarktischen und antarktischen Meeresalgen. II. Rhodophyceen. In: Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903. (Nordenskjöld, O. Eds) Vol. 4: 2, pp. 1–88. Stockholm: Litographisches Institut des Generalstabs
  • Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. (2012). Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29: 1695–1701.
  • Lee, I.K. (1978). Studies on Rhodymeniales from Hokkaido. Journal of Faculty of Science, Hokkaido Univiversity (Botany), 11: 1–194.
  • Lindeberg, M.R. & Lindstrom, S.C. (2010). Field guide to the seaweeds of Alaska.
  • Lindstrom, S.C., Hughey, J.R. & Martone, P.T. (2011). New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast Pacific. Phycologia, 50: 661–683.
  • Lindstrom, S.C., Olsen, J.L. & Stam, W.T. (1996). Recent radiation of the Palmariaceae (Rhodophyta). Journal of Phycology, 32: 457–468.
  • Lopatina, N.A. & Zhigadlova, G.G. (2020). Red algae. Algae of the division Rhodophyta. In Flora and Fauna of Matua Island (middle Kuril Islands): the field guide. Volume 1. Sea. (Sanamyan, K.E. & Sanamyan, N.P. Eds), 336–423. Cherepovets, Intron (in Russian).
  • Nagai, N. (1941). Marine algae of the Kurile Islands, II. Journal of the Faculty of Agriculture, Hokkaido Imperial University, 46: 139–310.
  • Perestenko, L.P. (1973). De speciebus novis Rhodymeniae Grev. et Odonthaliae Lyngb. notula. Novitates Systematicae Plantarum non Vascularium, 10: 61–68. (In Russian).
  • Perestenko, L.P. (1980). Vodorosli Zaliva Petra Velikogo [The seaweeds of Peter the Great Bay]. pp. 231, 404 figures. Leningrad: NAUKA Leningradskoe Otdelenie. (In Russian).
  • Perestenko, L.P. (1996). Krasnye vodorosli Dal’nevostochnyh morey Rossii (Red Algae of the Far-Eastern Seas of Russia). St.-Petersburg: Ol'ga. (In Russian).
  • Perestenko, L.P. (2004). On the typification of the genus Halosaccion and status of the genus Devaleraea (Palmariales, Rhodophyta). Botanicheslii Zhurnal, 89: 1147–1152. (In Russian).
  • Puillandre, N., Brouillet, S. & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21: 609–620.
  • Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21: 1864–1877.
  • Ricker, R.W. (1987). Taxonomy and biogeography of Macquarie Island seaweeds. pp. 1–344. London: British Museum (Natural History)
  • Ruprecht, F.J. (1851). Tange des Ochotskischen Meeres. In: Reise in den äussersten Norden und Osten Siberiens während der Jahre 1843 und 1844. ( von Middendorff, A.T. Eds) Vol. 1, pp. 191–435. St. Petersberg: Buchdruckerei der Kaiserlichen Akademie der Wissenschaften.
  • Saunders, G.W., Jackson, C. & Salomaki, E.D. (2018). Phylogenetic analyses of transcriptome data resolve familial assignments for genera of the red-algal Acrochaetiales-Palmariales complex (Nemaliophycidae). Molecular Phylogenetics and Evolution, 119: 151–159.
  • Saunders, G.W. & Moore, T.E. (2013). Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae, 28: 31–43.
  • Selivanova, O.N. (2002). Marine benthic algae of the Russian coasts of the Bering Sea (from Ozernoi Gulf to Dezhnev Bay, including Karaginskii Island). Constancea, 83.
  • Selivanova, O.N. & Zhigadlova, G.G. (1997). Marine algae of the Commander Islands. Preliminary remarks on the revision of the flora. III. Rhodophyta. Botanica Marina, 40: 15–24.
  • Selivanova, O.N. & Zhigadlova, G.G. (2009). Marine benthic algae of the South Kamchatka state wildlife sanctuary (Kamchatka, Russia). Botanica Marina, 52: 317–329.
  • Selivanova, O.N. & Zhigadlova, G.G. (2010). Members of the order Palmariales (Rhodophyta) at the Russian Pacific coasts. The genus Palmaria Stackhouse. Russian Journal of Marine Biology, 36: 497–506.
  • Shevchenko, G. V., Chastikov, V.N., Tshay, Zh R., Tsoy, A.T. & Kusaylo, O.V. (2012) Oceanological researches of SakhNIRO at the beginning of the XXI century. Transactions of the Sakhalin Research Institute of Fisheries and Oceanography, 13: 3–13. (In Russian).
  • Skriptsova, A.V. & Kalita, T.L. (2020). A re-evaluation of Palmaria (Palmariaceae, Rhodophyta) in the North-West Pacific. European Journal of Phycology, 55: 266–274.
  • Skriptsova, A.V., Kalita, T.L., Semenchenko, A.A. & Shibneva, S.Y. (2021). Devaleraea titlyanoviorum sp. nov. (Palmariaceae, Rhodophyta) from the Russian coast of the northwestern Pacific Ocean. Phycologia, 60: 25–34.
  • Skriptsova, A.V., Suzuki, M. & Semenchenko, A.A. (2022). Study of morphological variation of the Norwest Pacific Devaleraea mollis and description of D. inkyuleei Skriptsova & Mas. Suzuki sp. nov. Phycologia, 61: 606–615.
  • Stamatakis, A. (2014). RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.
  • Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J. & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4: vey016.
  • Takizawa, T. (1982). Characteristics of the Soya Warm Current in the Okhotsk Sea. Journal of the Oceanographical Society of Japan, 38: 281–292.
  • Vasilenko, Yu.P., Gorbarenko, S.A. & Zou. J. (2011). Ice cover changes of the Sea of Okhotsk during Late Pleistocene Glaciation and Holocene. Vestnik DVO RAN, 2: 70–77. (In Russian).
  • Vis, M.L., Tiwari, S., Evans, J.R., Stancheva, R., Sheath, R.G., Kennedy, B., Lee J. & Eloranta, P. (2020). Revealing hidden diversity in the Sheathia arcuata morphospecies (Batrachospermales, Rhodophyta) including four new species. Algae, 35: 213–224.
  • Wang, D., Wang, X.L., Li, D.P., Wang, F.J. & Duan, D.L. (2006). The genetic analysis and germplasm identification of the gametophytes of Undaria pinnatifida (Phaeophyceae) with RAPD method. Journal of Applied Phycology, 18: 801–809.
  • Yang, M.Y. & Kim, M.S. (2017). DNA barcoding of the funoran-producing red algal genus Gloiopeltis (Gigartinales) and description of a new species, Gloiopeltis frutex sp. nov. Journal of Applied Phycology, 30: 1381–1392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.