1,164
Views
33
CrossRef citations to date
0
Altmetric
Review

Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: a review

, , , , , , & show all
Pages 155-177 | Received 30 Mar 2019, Accepted 16 Dec 2019, Published online: 08 Jan 2020

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A. 2001. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 17(5):1367–1371.
  • Abbassy MA, Abdel-Rasoul MA, Nassar AM, Soliman BS. 2017. Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita. Arch Phytopathol Plant Protect. 50(17-18):909–926.
  • Abdelgaleil SAM, Badawy MEI, Mahmoud NF, Marei A. 2019. Acaricidal activity, biochemical effects and molecular docking of some monoterpenes against two-spotted spider mite (Tetranychus urticae Koch). Pest Biochem Physiol. 156:105–115.
  • Abdelgaleil SAM, Mohamed MIE, Shawir MS, Abou-Taleb HK. 2016. Chemical composition, insecticidal and biochemical effects of essential oils of different plant species from Northern Egypt on the rice weevil, Sitophilus oryzae L. J Pest Sci. 89(1):219–229.
  • Abou-Taleb HK, Mohamed MIE, Shawir MS, Abdelgaleil S. 2016. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Nat Prod Res. 30(6):710–714.
  • Aghel N, Yamini Y, Hadjiakhoondi A, Pourmortazavi SM. 2004. Supercritical carbon dioxide extraction of Mentha pulegium L. essential oil. Talanta. 62(2):407–411.
  • Aharoni A, Galili G. 2011. Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol. 22(2):239–244.
  • Alilou H, Akssira M, Idrissi Hassani LM, Chebli B, El Hakmoui A, Mellouki F, Rouhi R, Boira H, Blázquez MA. 2008. Chemical composition and antifungal activity of Bubonium imbricatum volatile oil. Phytopathol Mediterranea. 47:3–10. https://www.jstor.org/stable/26463292.
  • Al-Mousawi AH, Al-Naib F. 1975. Allelopathic effects of Eucalyptus microtheca F. Muell. J. Univ. Kuwait (Science). 2:59–66.
  • Amzouar S, Boughdad A, Maatoui A, Allam L. 2016. Comparison of the chemical composition and the insecticidal activity of essential oils of Mentha suaveolens Ehrh. collected from two different regions of Morocco, against Bruchus rufimanus (Bohman) (Coleoptera: Chrysomelidae). Int J Innov Appl Stud. 18:836–845.
  • Andolfi A, Cimmino A, Cantore PL, Iacobellis NS, Evidente A. 2008. Bioactive and structural metabolites of Pseudomonas and Burkholderia species causal agents of cultivated mushrooms diseases. Perspect Med Chem. 2:81–112.
  • Andrés MF, Rossa GE, Cassel E, Vargas RMF, Santana O, Díaz CE, González-Coloma A. 2017. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem Toxicol. 109:1086–1092.
  • Angioni A, Barra A, Coroneo V, Dessi S, Cabras P. 2006. Chemical composition, seasonal variability, and antifungal activity of Lavandla stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem. 54(12):4364–4370.
  • Aranda FJ, Teruel JA, Ortiz A. 2005. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta (BBA)-Biomembr. 1713:51–56.
  • Arasu MV, Viayaraghavan P, Ilavenil S, Al-Dhabi NA, Choi KC. 2019. Essential oil of four medicinal plants and protective properties in plum fruits against the spoilage bacteria and fungi. Indus Crops Prod. 133:54–62.
  • Arrebola E, Sivakumar D, Bacigalupo R, Korsten L. 2010. Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protect. 29(4):369–377.
  • Asano K, Shinagawa K, Hashimoto N. 1982. Characterization of haze-forming proteins of beer and their roles in chill haze formation. J Am Soc Brew Chem. 40(4):147–154.
  • Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar CH, Haubruge E. 2002. Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Mededelingen (Rijksuniversiteit Te Gent Fakulteit Van De Landouwkundige En Toegepaste Biologische Wetenschappen). 67:647–655.
  • Avato P, Laquale S, Argentieri MP, Lamiri A, Radicci V, D’Addabbo T. 2017. Nematicidal activity of essential oils from aromatic plants of Morocco. J Pest Sci. 90(2):711–722.
  • Ayed HB, Azabou MC, Hmidet N, Triki MA, Nasri M. 2018. Economic production and biocontrol efficiency of lipopeptide biosurfactants from Bacillus mojavenis A21. Biodegradation. 1–14.
  • Ayvaz A, Sagdic O, Karaborklu S, Ozturk I. 2010. Insecticidal activity of the essential oils from different plants against three stored-product insects. J Insect Sci. 10(21):1–13. 10.1673/031.010.2101.
  • Badi HN, Yazdani D, Ali SM, Nazari F. 2004. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Indus Crops Prod. 19(3):231–236.
  • Bais HP, Fall R, Vivanco JM. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134(1):307–319.
  • Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils–a review. Food Chem Toxicol. 46(2):446–475.
  • Ballio A, Barra D, Bossa F, Collina A, Grgurina I, Marino G, Moneti G, Paci M, Pucci P, Segre A, et al. 1991. Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae. FEBS Lett. 291(1):109–112.
  • Banat I M, Franzetti A, Gandolfi I, Bestetti G, Martinotti M G, Fracchia L, Smyth T J, Marchant R. 2010. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 87(2):427–444.
  • Barkai-Golan R. 2001. Postharvest diseases of fruits and vegetables: development and control. Amsterdam, The Netherland: Elsevier.
  • Basile A, Jiménez-Carmona MM, Clifford AA. 1998. Extraction of rosemary by superheated water. J Agric Food Chem. 46(12):5205–5209.
  • Bassarello C, Lazzaroni S, Bifulco G, Lo Cantore P, Iacobellis NS, Riccio R, Gomez-Paloma L, Evidente A. 2004. Tolaasins A − E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod. 67(5):811–816.
  • Beckman CH. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol. 57(3):101–110.
  • Benelli G, Govindarajan M, Rajeswary M, Vaseeharan B, Alyahya SA, Alharbi NS, Kadaikunnan S, Khaled JM, Maggi F. 2018. Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicol Environ Saf. 148:781–786.
  • Benelli G, Pavela R, Canale A, Nicoletti M, Petrelli R, Cappellacci L, Galassi R, Maggi F. 2017. Isofuranodiene and germacrone from Smyrnium olusatrum essential oil as acaricides and oviposition inhibitors against Tetranychus urticae: impact of chemical stabilization of isofuranodiene by interaction with silver triflate. J Pest Sci. 90(2):693–699.
  • Berger S, Sinha AK, Roitsch T. 2007. Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot. 58(15-16):4019–4026.
  • Brahmi F, Abdenour A, Bruno M, Silvia P, Alessandra P, Danilo F, Drifa Y-G, Fahmi E M, Khodir M, Mohamed C. 2016. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) huds growing in Algeria. Indus Crops Prod. 88:96–105.
  • Bryk H, Sobiczewski P, Dyki B. 1998. Antagonistic effect of Erwinia herbicola on in vitro spore germination and germ tube elongation of Botrytis cinerea and Penicillium expansum. BioControl. 43(1):97–106.
  • Bull CT, Wadsworth ML, Sorensen KN, Takemoto JY, Austin RK, Smilanick JL. 1998. Syringomycin E produced by biological control agents controls green mold on lemons. Biol Control. 12(2):89–95.
  • Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 94(3):223–253. 2004.03.022
  • Cabras P, Schirra M, Pirisi FM, Garau VL, Angioni A. 1999. Factors affecting imazalil and thiabendazole uptake and persistence in citrus fruits following dip treatments. J Agric Food Chem. 47(8):3352–3354.
  • Chebli B, Achouri M, Idrissi Hassani LM, Hmamouchi M. 2003a. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol Mediterranea. 42:251–256. https://www.jstor.org/stable/26456671.
  • Chebli B, Hmamouchi M, Achouri M, Idrissi Hassani LM. 2004. Composition and in vitro fungitoxic activity of 19 essential oils against two post-harvest pathogens. J Essential Oil Res. 16(5):507–511.
  • Chebli B, Achouri M, Idrissi Hassani LM, Hmamouchi M. 2003b. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharmacol. 89:165–169.
  • Chernin L, Ismailov Z, Haran S, Chet I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol. 61(5):1720–1726.
  • Cid-Pérez TS, Torres-Muñoz JV, Nevárez-Moorillón GV, Palou E, López-Malo A. 2016. Chemical characterization and antifungal activity of Poliomintha longiflora Mexican oregano. J Essential Oil Res. 28(2):157–165.
  • Conner DE, Beuchat LR. 1984. Effects of essential oils from plants on growth of food spoilage yeasts. J Food Sci. 49(2):429–434.
  • Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G. 2014. Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res. 113(1):251–259.
  • Da Cruz Cabral L, Pinto VF, Patriarca A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol. 166(1):1–14.
  • Daferera DJ, Ziogas BN, Polissiou MG. 2000. GC-MS Analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J Agric Food Chem. 48(6):2576–2581.
  • Dangl JL, Jones J. 2001. Plant pathogens and integrated defence responses to infection. Nature. 411(6839):826–833.
  • Davis EL, Haegeman A, Kikuchi T. 2011. Degradation of the plant cell wall by nematodes. In: Jones J, Gheysen G, Fenoll C, editors. Genomics and molecular genetics of plant-nematode interactions. Dordrecht: Springer; p. 255–272.
  • De Andrade Dutra K, de Oliveira JV, Navarro DMdAF, Barbosa DReS, Santos JPO. 2016. Control of Callosobruchusmaculatus (FABR.)(Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. J Stored Prod Res. 68:25–32.
  • De Araujo LV, Guimarães CR, Da Silva Marquita RL, Santiago VMJ, De Souza MP, Nitschke M, Freire D. 2016. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 63:171–178.
  • De Bruijn LLM, Sommeijer MJ. 1997. Colony foraging in different species of stingless bees (Apidae, Meliponinae) and the regulation of individual nectar foraging. Insectes Sociaux. 44(1):35–47.
  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF. 2014. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv. 32(8):1550–1561.
  • Deleu M, Paquot M, Nylander T. 2005. Fengycin interaction with lipid monolayers at the air–aqueous interface—implications for the effect of fengycin on biological membranes. J Colloid Interface Sci. 283(2):358–365.
  • Detoni CB, de Oliveira DM, Santo IE, Pedro AS, El-Bacha R, da Silva Velozo E, Ferreira D, Sarmento B, De Magalhães Cabral-Albuquerque EC. 2012. Evaluation of thermal-oxidative stability and antiglioma activity of Zanthoxylumtingoassuiba essential oil entrapped into multi-and unilamellar liposomes. J Liposome Res. 22(1):1–7.
  • Dimkić I, Berić T, Stević T, Pavlović S, Šavikin K, Fira D, Stanković S. 2015. Additive and synergistic effects of Bacillus spp. isolates and essential oils on the control of phytopathogenic and saprophytic fungi from medicinal plants and marigold seeds. Biol Control. 87:6–13.
  • Dixon RA. 1999. Plant natural products: the molecular genetic basis of biosynthetic diversity. Curr Opin Biotechnol. 10(2):192–197.
  • Dorman HJD, Deans SG. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 88(2):308–316.
  • Ebadollahi A, Jalali-Sendi J, Razmjou J. 2016. Toxicity and phytochemical profile of essential oil from Iranian Achilleamellifolium L. against Tetranychus urticae Koch (Acari: Tetranychidae). Toxin Rev. 35(1-2):24–28.
  • El Ouadi Y, Manssouri M, Bouyanzer A, Majidi L, Bendaif H, Elmsellem H, Shariati M, Melhaoui A, Hammouti B. 2017. Essential oil composition and antifungal activity of Melissa officinalis originating from North-Est Morocco, against postharvest phytopathogenic fungi in apples. Microb Pathogenesis. 107:321–326.
  • El-Mogy MM, Alsanius BW. 2012. Cassia oil for controlling plant and human pathogens on fresh strawberries. Food Control. 28(1):157–162.
  • Eloh K, Kpegba K, Sasanelli N, Koumaglo HK, Caboni P. 2019. Nematicidal activity of some essential plant oils from tropical West Africa. Int J Pest Manage. 1–11.
  • Enan EE. 2005. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol. 59(3):161–171.
  • Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka E A, Jacquard C, Dorey S. 2015. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol. 16(2):177–187.
  • Ferhat MA, Meklati BY, Chemat F. 2007. Comparison of different isolation methods of essential oil from citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour Fragr J. 22(6):494–504.
  • Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Kupferschmied KP, Kupferschmied P, Metla Z, Ma Z, et al. 2017. Antimicrobial and Insecticidal: Cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol. 8:100.
  • Fraternale D, Flamini G, Ricci D. 2016. Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosyst. 150(3):558–563.
  • Georgiou G, Lin SC, Sharma MM. 1992. Surface–active compounds from microorganisms. Nat Biotechnol. 10(1):60–65.
  • Geudens N, Sinnaeve D, Martins JC. 2018. Cyclic lipodepsipeptides: time for a concerted action to unlock their application potential? Future Med Chem. 10(5):479–481.
  • Ghribi D, Abdelkefi-Mesrati L, Boukedi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S. 2012a. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Invertebr Pathol. 109(2):183–186.
  • Ghribi D, Elleuch M, Abdelkefi L, Ellouze-Chaabouni S. 2012b. Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stored Prod Res. 48:68–72.
  • Ghribi D, Elleuch M, Abdelkefi-Mesrati L, Boukadi H, Ellouze-Chaabouni S. 2012c. Histopathological effects of Bacillussubtilis SPB1 biosurfactant in the midgut of Ephestia kuehniella (Lepidoptera: Pyralidae) and improvement of its insecticidal efficiency. J Plant Dis Protect. 119(1):24–29.
  • Gomes RC, Sêmedo L, Soares RMA, Linhares LF, Ulhoa CJ, Alviano CS, Coelho RR. 2001. Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J Appl Microbiol. 90(4):653–661.
  • Götze S, Herbst-Irmer R, Klapper M, Görls H, Schneider KRA, Barnett R, Burks T, Neu U, Stallforth P. 2017. Structure, biosynthesis, and biological activity of the cyclic lipopeptide anikasin. ACS Chem Biol. 12(10):2498–2502.
  • Groupé V, Pugh LH, Weiss D, Kochi M. 1951. Observations on antiviral activity of viscosin. Proceedings of the Society for. Exp Biol Med. 78:354–358.
  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res. 169(7-8):533–540.
  • Guo Y, Ni J, Denver R, Wang X, Clark SE. 2011. Mechanisms of molecular mimicry of plant CLE peptide ligand by the parasitic nematode Globodera rostochiensis. Plant Physiol. 157(1):476–484.
  • Haegeman A, Mantelin S, Jones JT, Gheysen G. 2012. Functional roles of effectors of plant-parasitic nematodes. Gene. 492(1):19–31.
  • Haider S. Z, Mohan M, Pandey A K, Singh P. 2017. Use of Tanacetum tomentosum and Ta. dolichophyllumessential oils as botanical repellents and insecticidal agents against storage pest Tribolium castaneum (Coleoptera: Tenebrionidae). Entomol Res. 47(5):318–327.
  • Hansen M, Thrane C, Olsson S, Sørensen J. 2000. Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide. Mycologia. 92(2):216–221.
  • Hartmann T. 2007. From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry. 68(22-24):2831–2846.
  • Hashimoto Y. 2002. Study of the bacteria pathogenic for aphids, isolation of bacteria and identification of insecticidal compound. Rep Hokkaido Prefectural Agric Exp Station (Japan). 102:1–48.
  • Hewezi T, Baum TJ. 2013. Manipulation of plant cells by cyst and root-knot nematode effectors. MPMI. 26(1):9–16.
  • Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry. 61(6):693–698. (02)00365-5
  • Hori M. 2003. Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Appl Entomol Zool. 38(4):467–473.
  • Hossain F, Follett P, Vu KD, Harich M, Salmieri S, Lacroix M. 2016. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 53:24–30.
  • Huang X, Lu Z, Bie X, Lu F, Zhao H, Yang S. 2007. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl Microbiol Biotechnol. 74(2):454–461.
  • Hull LA, Beers EH. 1985. Ecological selectivity: modifying chemical control practices to preserve natural enemies. In: Hoy MA, Herzog DC, editors. Biological control in Agriculture IPM System. Florida: Academic Press; p. 103–122.
  • Hummelbrunner LA, Isman MB. 2001. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem. 49(2):715–720.
  • Inès M, Dhouha G. 2015. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides. 71:100–112.
  • Isman MB. 2000. Plant essential oils for pest and disease management. Crop Protect. 19(8-10):603–608.
  • Isman MB. 2005. Problems and opportunities for the commercialization of botanical insecticides. Biopest Plant Origin. 283–291. In: Lavoisier, Paris.
  • Isman MB. 2016. Pesticides based on plant essential oils: phytochemical and practical considerations. Med Aromatic Crops: Prod, Phytochem Utilization. 13–26.
  • Isman MB, Machial CM. 2006. Pesticides based on plant essential oils: from traditional practice to commercialization. Adv Phytomed. 3:29–44.
  • Isman MB, Wan AJ, Passreiter CM. 2001. Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia. 72(1):65–68.
  • Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS. 2013. Identification of Orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem. 61(28):6786–6791.
  • Javaheri M, Jenneman GE, McInerney MJ, Knapp RM. 1985. Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl Environ Microbiol. 50(3):698–700.
  • Jeon JH, Ko HR, Kim SJ, Lee JK. 2016. Chemical compositions and nematicidal activities of essential oils on Meloidogyne hapla (Nematoda: Tylenchida) under laboratory conditions. KJPS. 20(1):30–34. http://dx.doi.org/10.7585/kjps.2016.20.1.30.
  • Ji H, Li YC, Wen ZY, Li XH, Zhang HX, Li HT. 2016. GC-MS analysis of nematicidal essential oil of Mentha canadensis aerial parts against Heterodera avenae and Meloidogyne incognita. J Essential Oil Bearing Plants. 19(8):2056–2064.
  • Jones JDG, Dangl JL. 2006. The plant immune system. Nature. 444(7117):323–329.
  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. MPMI. 22(4):456–468.
  • Kaloustian J, Chevalier J, Mikail C, Martino M, Abou L, Vergnes MF. 2008. Étude de six huiles essentielles: composition chimique et activité antibactérienne. Phytotherapie. 6(3):160–164.
  • Khanavi M, Laghaei P, Isman MB. 2017. Essential oil composition of three native Persian plants and their inhibitory effects in the cabbage looper, Trichoplusia ni. J Asia-Pacific Entomol. 20(4):1234–1240.
  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol. 97(5):942–949.
  • Kim NS, Lee DS. 2002. Comparison of different extraction methods for the analysis of fragrances from Lavandla species by gas chromatography–mass spectrometry. J Chromatogr A. 982(1):31–47.
  • Kim SW, Lee HR, Jang MJ, Jung CS, Park IK. 2016a. Fumigant toxicity of Lamiaceae plant essential oils and blends of their constituents against adult rice weevil Sitophilus oryzae. Molecules. 21(3):361.
  • Kim E, Oh CS, Koh SH, Kim HS, Kang KS, Park PS, Jang MJ, Lee HR, Park IK. 2016b. Antifungal activities after vaporization of ajowan (Trachyspermum ammi) and allspice (Pimenta dioica) essential oils and blends of their constituents against three Aspergillus species. J Essential Oil Res. 28(3):252–259.
  • Kim J, Seo SM, Lee SG, Shin SC, Park IK. 2008. Nematicidal activity of plant essential oils and components from coriander (Coriandum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J Agric Food Chem. 56(16):7316–7320.
  • Kimbaris A C, González-Coloma A, Andrés M F, Vidali V P, Polissiou M G, Santana-Méridas O. 2017. Biocidal compounds from Mentha sp. essential oils and their structure-activity relationships. Chem Biodivers. 14(3):e1600270.
  • Koul O, Walia S, Dhaliwal GS. 2008. Essential oils as green pesticides: potential and constraints. Biopest Int. 4:63–84.
  • Koutsaviti A, Antonopoulou V, Vlassi A, Antonatos S, Michaelakis A, Papachristos DP, Tzakou O. 2018. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J Pest Sci. 91(2):873–886.
  • Kruijt M, Tran H, Raaijmakers JM. 2009. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol. 107(2):546–556.
  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV. 2004. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 51(1):97–113.
  • Kurkin VA. 2003. Phenylpropanoids from medicinal plants: distribution, classification, structural analysis, and biological activity. Adv Biol Chem. 39:123–153.
  • Lahlou M. 2004. Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res. 18(6):435–448.
  • Laquale S, Avato P, Argentieri MP, Bellardi MG, D’Addabbo T. 2018. Nematotoxic activity of essential oils from Monarda species. J Pest Sci. 91(3):1115–1125.
  • Lavermicocca P, Sante Iacobellis NS, Simmaco M, Graniti A. 1997. Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol Mol Plant Pathol. 50(2):129–140.
  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P. 2006. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol. 186(6):475–483.
  • Lee C, Chronis D, Kenning C, Peret B, Hewezi T, Davis EL, Baum TJ, Hussey R, Bennett M, Mitchum MG. 2011. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol. 155(2):866–880.
  • Lee YS, Kim J, Shin SC, Lee SG, Park IK. 2008. Antifungal activity of Myrtaceae essential oils and their components against three phytopathogenic fungi. Flavour Fragr J. 23(1):23–28.
  • Levy E, Gough F. J, Berlin K. D, Guiana P. W, Smith J. T. 1992. Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol. 41(3):335–341.
  • Li YC, Ji H, Li XH, Zhang HX, Li HT. 2017. Isolation of nematicidal constituents from essential oil of Kaempferia galanga L rhizome and their activity against Heterodera avenae Wollenweber. Trop J Pharm Res. 16(1):59–65. http://dx.doi.org/10.4314/tjpr.v16i1.8.
  • Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MG, Sinnaeve D, Xie GL, Rozenski J, Madder A, Martins JC, De Mot R. 2013. The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS One. 8(5):e62946.
  • Lim DJ, Yang SY, Noh MY, Lee CW, Kim JC, Kim IS. 2017. Identification of lipopeptide xantholysins from Pseudomonas sp. DJ15 and their insecticidal activity against Myzus persicae. Entomol Res. 47(6):337–343.
  • Limpel LE. 1962. Weed control by dimethyl tetrachloroterephthalate alone and in certain combinations. Proceedings of the Northeast Weed Control Conference, New York. 16. p. 48–53.
  • Loper J E, Henkels M D, Rangel L I, Olcott M H, Walker F L, Bond K L, Kidarsa T A, Hesse C N, Sneh B, Stockwell V O, et al. 2016. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonasprotegens strain Pf-5 to Drosophila melanogaster. Environ Microbiol. 18(10):3509–3521.
  • López-Meneses AK, Sánchez-Mariñez RI, Quintana-Obregón EA, Parra-Vergara NV, González-Aguilar GA, López-Saiz CM, Cortez-Rocha MO. 2017. In vitro antifungal activity of essential oils and major components against fungi plant pathogens. J Phytopathol. 165(4):232–237.
  • Lu H, Xu S, Zhang W, Xu C, Li B, Zhang D, Mu W, Liu F. 2017. Nematicidal Activity of trans-2-hexenal against Southern root-knot nematode (Meloidogyne incognita) on tomato plants. J Agric Food Chem. 65(3):544–550.
  • Lucchesi ME, Smadja J, Bradshaw S, Louw W, Chemat F. 2007. Solvent free microwave extraction of Elletaria cardamomum L.: a multivariate study of a new technique for the extraction of essential oil. J Food Eng. 79(3):1079–1086.
  • Lucini EI, Zunino MP, López ML, Zygadlo JA. 2006. Effect of monoterpenes on lipid composition and sclerotial development of Sclerotium cepivorum Berk. J Phytopathol. 154(7-8):441–446.
  • Ma BX, Ban XQ, He JS, Huang B, Zeng H, Tian J, Chen YX, Wang YW. 2016a. Antifungal activity of Ziziphoraclinopodioides Lam. essential oil against Sclerotinia sclerotiorum on rapeseed plants (Brassica campestris L.). Crop Protect. 89:289–295.
  • Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, Höfte M. 2016b. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. 7:382.
  • Makkar R, Cameotra S. 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied microbiology and biotechnology. 58:428–434.
  • Mansour SA, El-Sharkawy AZ, Abdel-Hamid NA. 2015. Toxicity of essential plant oils, in comparison with conventional insecticides, against the desert locust, Schistocerca gregaria (Forskål). Indus Crops Prod. 63:92–99.
  • Marei GIK, Abdelgaleil S. 2018. Antifungal potential and biochemical effects of monoterpenes and phenylpropenes on plant pathogenic fungi. Plant Protect Sci. 54:9–16.
  • Martinez JA. 2012. Natural fungicides obtained from plants. In: Dhanasekaran D, editor. Fungicides for plant and animal diseases. Croatia: IntechOpen; p. 3–28.
  • Mejdoub K, Benomari FZ, Djabou N, Dib MEA, Benyelles NG, Costa J, Muselli A. 2019. Antifungal and insecticidal activities of essential oils of four Mentha species. Jundishapur J Nat Pharm Prod. 14:e64165.
  • Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P. 2015. Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio. 6(2):e00079–15.
  • Mihalache G, Balaes T, Gostin I, Stefan M, Coutte F, Krier F. 2018. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res. 25(30):29784–29793.
  • Mireles JR, Toguchi A, Harshey RM. 2001. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 183(20):5848–5854.
  • Moghaddam M, Mehdizadeh L. 2017. Chemistry of essential oils and factors influencing their constituents. In: Grumezescu AM, Holban AM, editors. Soft chemistry and food fermentation. Cambridge: Academic press; p. 379–419.
  • Mohammadifar M, Norabadi MT, Hasanzadeh M, Dashtipoor S, Etebarian HR, Sahebani N. 2012. Study of antifungal activities of seven essential oils from some Iranian medicinal plants against various postharvest phytopathogenic fungi. Arch Phytopathol Plant Protect. 45(17):2046–2056.
  • Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E. 2002. Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech. 3(2):64–74.
  • Moyne AL, Shelby R, Cleveland TE, Tuzun S. 2001. Bacillomycin D: an iturin with antifungal activity against Aspergillusflavus. J Appl Microbiol. 90(4):622–629.
  • Mukherjee S, Das P, Sen R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24(11):509–515.
  • Mulligan CN, Yong RN, Gibbs BF. 2001. Heavy metal removal from sediments by biosurfactants. J Hazard Mater. 85(1-2):111–125.
  • Nasiou E, Giannakou IO. 2017. The potential use of carvacrol for the control of Meloidogyne javanica. Eur J Plant Pathol. 149(2):415–424.
  • Nasiou E, Giannakou IO. 2018. Effect of geraniol, a plant-based alcohol monoterpene oil, against Meloidogyne javanica. Eur J Plant Pathol. 152(3):701–710.
  • Neu TR. 1996. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev. 60(1):151–166.
  • Nguyen DD, Melnik A, Koyama N, Lu X, Schorn M, Fang J, Aguinaldo K, Lincecum TL, JrGhequire MGK, Carrion VJ, et al. 2016. Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nat Microbiol. 2(1):16197. https://www.nature.com/articles/nmicrobiol2016197#supplementary-information.
  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J. 2000. Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96-578. J Appl Microbiol. 898:992–1001.
  • Oka Y. 2001. Nematicidal activity of essential oil components against the root-knot nematode Meloidogyne javanica. Nematology. 3(2):159–164.
  • Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology. 90(7):710–715.
  • Olorunleke FE, Hua GKH, Kieu NP, Ma Z, Höfte M. 2015. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ Microbiol Rep. 7(5):774–781.
  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Bélanger RR. 1999. Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol. 48:66–76.
  • Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16(3):115–125.
  • Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol. 69(1):29–38.
  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 9(4):1084–1090.
  • Onifade A K, Fatope M O, Deadman M L, Al-Kindy S M.Z. 2008. Nematicidal activity of Haplophyllum tuberculatum and Plectranthus cylindraceus oils against Meloidogyne javanica. Biochem Syst Ecol. 36(9):679–683.
  • Pandey R, Kalra A, Tandn S, Mehrotra N, Singh HN, Kumar S. 2000. Essential Oils as potent source of nematicidal compounds. J Phytopathol. 148:501–502.
  • Papachristos DP, Stamopoulos DC. 2002. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res. 38(2):117–128.
  • Park H-M, Kim J, Chang K-S, Kim B-S, Yang Y-J, Kim G-H, Shin S-C, Park I-K. 2011. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. Jnl Med Entom. 48(2):405–410.
  • Pavela R, Benelli G. 2016. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21(12):1000–1007.
  • Pavela R, Govindarajan M. 2017. The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci. 90(1):369–378.
  • Pedras MSC, Ismail N, Quail JW, Boyetchko SM. 2003. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry. 62(7):1105–1114.
  • Pichersky E, Gershenzon J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 5(3):237–243.
  • Prakash P, Gupta N. 2005. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Physiol Pharmacol. 49:125–131.
  • Pusey PL, Wilson CL, Wisniewski ME. 2018. Management of postharvest diseases of fruits and vegetables: strategies to replace vanishing fungicides. In: Altman J, editor. Pesticide interactions in crop production. Boca Raton: CRC Press; p. 477–492.
  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 34(6):1037–1062.
  • Ramezanian A, Azadi M, Mostowfizadeh-Ghalamfarsa R, Saharkhiz MJ. 2016. Effect of Zataria multiflora Boiss and Thymus vulgaris L. essential oils on black rot of ‘Washington Navel’ orange fruit. Postharvest Biol Technol. 112:152–158.
  • Rattan RS. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protect. 29(9):913–920.
  • Rautenbach M, Swart P, Vvan der Merwe MJ. 2000. The interaction of analogues of the antimicrobial lipopeptide, iturin A2, with alkali metal ions. Bioorg Med Chem. 8:2539–2548.
  • Reddy SGE, Dolma SK. 2018. Acaricidal activities of essential oils against two-spotted spider mite, Tetranychus Urticae Koch. Toxin Rev. 37(1):62–66.
  • Regnault-Roger C, Hamraoui A. 1995. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.). J Stored Prod Res. 31(4):291–299.
  • Regnier T, Combrinck S, Veldman W, Du Plooy W. 2014. Application of essential oils as multi-target fungicides for the control of Geotrichum citri-aurantii and other postharvest pathogens of citrus. Indus Crops Prod. 61:151–159.
  • Ribeiro AV, de Sá Farias E, Santos AA, Filomeno CA, dos Santos IB, Barbosa LCA, Picanço MC. 2018. Selection of an essential oil from Corymbia and Eucalyptus plants against Ascia monuste and its selectivity to two non-target organisms. Crop Protect. 110:207–213.
  • Richer DL. 1987. Synergism—a patent view. Pest Sci. 19(4):309–315.
  • Romero D, De Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. MPMI. 20(4):430–440.
  • Ron EZ, Rosenberg E. 2001. Natural roles of biosurfactants. Environ Microbiol. 3(4):229–236.
  • Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 2003. Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol. 10:869–880.
  • Sabaté DC, Audisio MC. 2013. Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol Res. 168(3):125–129.
  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 91(4):621–632.
  • Segre A, Bachmann RC, Ballio A, Bossa F, Grgurina I, Iacobellis NS, Marino G, Pucci P, Simmaco M, Takemoto JY. 1989. The structure of syringomycins A1, E and G. FEBS Lett. 255(1):27–31.
  • Seo S-M, Park H-M, Park I-K. 2012. Larvicidal activity of ajowan (Trachyspermum ammi) and Peru balsam (Myroxylon pereira) oils and blends of their constituents against mosquito, Aedes aegypti, acute toxicity on water flea, Daphnia magna, and aqueous residue. J Agric Food Chem. 60(23):5909–5914.
  • Sharma N, Tripathi A. 2008. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol Res. 163(3):337–344.
  • Shoda M. 2000. Bacterial control of plant diseases. J Biosci Bioeng. 89(6):515–521.
  • Sikkema J, de Bont JA, Poolman B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 59(2):201–222.
  • Singh P, Patil Y, Rale V. 2019. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol. 126(1):2–13.
  • Soliman KM, Badeaa RI. 2002. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol. 40(11):1669–1675.
  • Sørensen D, Nielsen T H, Christophersen C, Sørensen J, Gajhede M. 2001. Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C Cryst Struct Commun. 57(9):1123–1124.
  • Soylu EM, Kose F. 2015. Antifungal activities of essential oils against citrus black rot disease agent Alternaria alternata. J Essential Oil Bearing Plants. 18(4):894–903.
  • Stević T, Berić T, Šavikin K, Soković M, Gođevac D, Dimkić I, Stanković S. 2014. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Indus Crops Prod. 55:116–122.
  • Stewart D. 2005. The chemistry of essential oils made simple: God's love manifest in molecules. Marble Hill: Care publications.
  • Tak JH, Jovel E, Isman MB. 2016a. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest Manag Sci. 72(3):474–480.
  • Tak JH, Jovel E, Isman MB. 2016b. Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J Pest Sci. 89(1):183–193.
  • Tang X, Shao Y-L, Tang Y-J, Zhou W-W. 2018. Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules. 23(9):2108.
  • Tao Y, Bie XM, Lv FX, Zhao HZ, Lu ZX. 2011. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol. 49(1):146–150.
  • Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol. 103(6):2331–2339.
  • Thompson DP. 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia. 81(1):151–153.
  • Thompson JD, Chalchat JC, Michet A, Linhart YB, Ehlers B. 2003. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol. 29(4):859–880.
  • Tomazoni EZ, Pauletti GF, Da Silva Ribeiro RT, Moura S, Schwambach J. 2017. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci Horticul. 223:72–77.
  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol. 96:1151–1160.
  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175(4):731–742.
  • Valadares ACF, Alves CCF, Alves JM, De Deus IPB, DO F.J.G, Dos Santos TCL, Dias HJ, Crotti AEM, Mirand M. 2018. Essential oils from Piper aduncum inflorescences and leaves: chemical composition and antifungal activity against Sclerotinia sclerotiorum. An Acad Bras Ciênc. 90(3):2691–2699. http://dx.doi.org/10.1590/0001-3765201820180033.
  • Van de Mortel JE, Tran H, Govers F, Raaijmakers JM. 2009. Cellular responses of the late blight pathogen Phytophthorainfestans to cyclic lipopeptide surfactants and their dependence on G Proteins. Appl Environ Microbiol. 75(15):4950–4957.
  • Verma RK, Chaurasia L, Kumar M. 2011. Antifungal activity of essential oils against selected building fungi. Indian J Nat Prod Resour. 2:448–451. http://nopr.niscair.res.in/handle/123456789/13343.
  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol. 5(5):283–291.
  • Vila R, Mundina M, Tomi F, Furlan R, Zacchino S, Casanova J, Cañigueral S. 2002. Composition and antifungal activity of the essential oil of Solidago chilensis. Planta Med. 68(2):164–167.
  • Vitoratos A, Bilalis D, Karkanis A, Efthimiadou A. 2013. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not Bot Hort Agrobot Cluj. 41(1):86–92.
  • Wang K, Jiang S, Pu T, Fan L, Su F, Ye M. 2019. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat Prod Res. 33(10):1423–1430.
  • Wang J, Liu J, Chen H, Yao J. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl Microbiol Biotechnol. 76(4):889–894.
  • Wedge DE, Galindo JCG, Macı́as FA. 2000. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry. 53(7):747–757.
  • Wisniewski ME, Wilson CL. 1992. Biological control of post-harvest diseases of fruits and vegetables: recent advances. HortSci. 27(2):94–98.
  • Xie Y, Huang Q, Wang Z, Cao H, Zhang D. 2017. Structure-activity relationships of cinnamaldehyde and eugenol derivatives against plant pathogenic fungi. Indus Crops Prod. 97:388–394.
  • Yang F-L, Li X-G, Zhu F, Lei C-L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J Agric Food Chem. 57(21):10156–10162.
  • Yazdanpanah L, Mohamadi N. 2014. Antifungal activity of Satureja hortensis L. essential oil against Alternaria citri. Eur J Exp Biol. 4:399–403.
  • Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lämmerhofer M, Berg G, et al. 2015. The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization. MPMI. 28(7):800–810.
  • Zamani-Zadeh M, Soleimanian-Zad S, Sheikh-Zeinoddin M, Goli S. 2014. Integration of Lactobacillus plantarum A7 with thyme and cumin essential oils as a potential biocontrol tool for gray mold rot on strawberry fruit. Postharvest Biol Technol. 92:149–156.
  • Zhang H, Ma L, Wang L, Jiang S, Dong Y, Zheng X. 2008. Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biol Control. 47(1):60–65.
  • Zhang Z, Pang X, Guo S, Cao J, Wang Y, Chen Z, Feng Y, Lei N, Du S. 2019. Insecticidal activity of Artemisia frigida willd. essential oil and its constituents against three stored product insects. Rec Nat Prod. 13(2):176–181.
  • Zhang JH, Sun HL, Chen SY, Zeng L, Wang TT. 2017. Anti-fungal activity, mechanism studies on α-phellandene and nonanal against Penicillium cyclopium. Bot Stud. 58(1):13–21.
  • Zhang Z, Yang T, Zhang Y, Wang L, Xie Y. 2016. Fumigant toxicity of monoterpenes against fruit fly, Drosophila melanogaster. Indus Crops Prod. 81:147–151.
  • Zhao P, Quan C, Wang Y, Wang J, Fan S. 2014. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol. 54(5):448–456.
  • Zhu Z, Zhang G, Luo Y, Ran W, Shen Q. 2012. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour Technol. 112:254–260.
  • Zouari R, Ellouze-Chaabouni S, Ghribi-Aydi D. 2014. Optimization of Bacillus subtilis SPB1 biosurfactant production under solid-state fermentation using by-products of a traditional olive mill factory. Achieve Life Sci. 8(2):162–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.