97
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Multiple myeloma: the bone marrow microenvironment and its relation to treatment

, , , &
Pages 110-120 | Accepted 06 Jun 2013, Published online: 20 Jan 2016

References

  • Cancer Research UK (www.cancerresearchuk.org/cancer-info/cancerstats/types/myeloma/incidence/).
  • Cancer Research UK (www.cancerresearchuk.org/cancer-info/cancerstats/types/myeloma/uk-multiple-myeloma-statistics).
  • Singhal S, Mehta J. Multiple myeloma. Clin J Am Soc Nephrol 2006; 1 (6): 1322–30.
  • Gertz MA, Greipp PR eds. Multiple myeloma and related plasma cell disorders. London: Springer, 2004: 97–9.
  • Yang HH, Ma MH, Vescio RA, Berenson JR. Overcoming drug resistance in multiple myeloma: the emergence of therapeutic approaches to induce apoptosis. J Clin Oncol 2003; 21 (22): 4239–47.
  • Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol 2012; 2012: 157496. doi:10.1155/2012/157496.
  • Michigami T, Shimizu N, Williams PJ et al. Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and a4p1-integrin enhances production of osteoclast-stimulating activity. Blood 2000; 96 (5): 1953–60.
  • Sarkar A. Embryonic stem cells. Delhi: Discovery Publishing House, 2009: 241–2.
  • Nakamizo A, Marini F, Amano T et al. Human bone marrow derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65 (8): 3307–18.
  • Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 2005; 140 (1): 138–43.
  • Miao Z, Jin J, Chen L et al. Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006; 30 (9): 681–7.
  • Dominici M, Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4): 315–7.
  • Pei X. Stem cell engineering the new generation of cellular therapeutics. Int J Hematol 2002; 76 (Suppl 1): 155–6.
  • Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 2006; (174): 249–82.
  • da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008; 26 (9): 2287–99.
  • Zeng H, Zhong Q, Qin Y et al. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord derived mesenchymal stem cells. BMC Cell Biol 2011; 12: 32.
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143–7.
  • Fibbe WE, Noort WA. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann NY Acad Sci 2003; 996: 235–44.
  • Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000; 9 (6): 841–8.
  • Oshima T, Abe M, Asano J et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106 (9): 3160–5.
  • Corre J, Mahtouk K, Attal M et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21 (5): 1079–88.
  • Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterisation, origin and tumor promoting effects. Clin Cancer Res 2012; 18 (2): 342–9.
  • Borrello I. Can we change the disease biology of multiple myeloma? Leuk Res 2012; 36 (Suppl 1): S3–12.
  • Raimondo DF, Azzaro MP, Palumbo GA et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 2000; 85 (8): 800–5.
  • Ahsmann EJ, Lokhorst HM, Dekker AW, Bloem AC. Lymphocyte function-associated antigen-1 expression on plasma cells correlates with tumor growth in multiple myeloma. Blood 1992; 79 (8): 2068–75.
  • Damiano JS, Cress AE, Hazelhurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93 (5): 342–9.
  • van Camp B, Durie BG, Spier C et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1;Leu-19). Blood 1990; 76 (2): 377–82.
  • Tatsumi T, Shimazaki C, Goto H et al. Expression of adhesion molecules on myeloma cells. Jpn J Cancer Res 1996; 87 (8): 837–42.
  • Ara Y, Declerk YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 2010; 46 (7): 1223–31.
  • Chatterjee M, Honemann D, Lentzsch S et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100 (9): 3311–8.
  • Ogata A, Chauhan D, Teoh G et al. IL-6 triggers cell growth via the ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159: 2212–21.
  • Ni H, Ergin M, Huang Q et al. Analysis of expression of nuclear factor kappaB (NF-kappaB) in multiple myeloma: downregulation of NF-kB induces apoptosis. Br J Haematol 2001; 115: 279–86.
  • Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3 (3): 221–7.
  • Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 1999; 19 (8): 5785–99.
  • Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20 (31): 4188–97.
  • Cozzolino F, Torcia M, Aldinucci D et al. Production of interleukin-1 by bone marrow myeloma cells. Blood 1989; 74 (1): 380–7.
  • Lee JW, Chung HY, Ehrlich LA et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 2004; 103 (6): 2308–15.
  • Klein B, Zhang XG, Jourdan M et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73 (2): 517–26.
  • Lichtenstein A, Berenson J, Norman D, Chang MP, Carlile A. Production of cytokines by bone marrow cells obtained from patients with multiple myeloma. Blood 1989; 74 (4): 1266–73.
  • Davies FE, Rollinson SJ, Rawstron AC et al. High-producer haplotypes of tumor necrosis factor alpha and lymphotoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment. J Clin Oncol 2000; 18 (15): 2843–51.
  • Ria R, Poccaro AM, Merchionne F, Vacca A, Dammacco F, Ribatti D. Vascular endothelial growth factor and its receptors in multiple myeloma. Leukemia 2003; 17 (10): 1961–6.
  • Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY. Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003; 101 (9): 3568–73.
  • Wallace SR, Oken MM, Lunetta KL, Panaskaltsis-Mortari A, Masellis AM. Abnormalities of bone marrow mesenchymal stem cells in multiple myeloma patients. Cancer 2001; 91 (7): 1219–30.
  • Bataille R, Jourdan M, Zhang X, Klein B. Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflection of disease severity in plasma cell dyscrasias. J Clin Invest 1999; 84: 2008–11.
  • Scheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol 2006; 195 (4): 173–83.
  • Mitsiades CS, Mitsiades NS, Munshi NC, Richardson PG, Anderson KC. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 2006; 42: 1564–73.
  • Catlett-Falcone R, Landowski TH, Oshiro MM et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–15.
  • Arden N, Betenbaugh MJ. Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 2004; 22 (4): 174–80.
  • Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004; 9 (6): 667–76.
  • Brady HJM. Apoptosis methods and protocols. London: Springer, 2004: 169–77.
  • Liang J, Slingerland JM. Multiple roles of P13K/PKB (AKt) pathway in cell cycle progression. Cell Cycle 2003; 2 (4): 339–45.
  • Hu L, Shi Y, Hsu J, Gera J, Ness BV, Lichtenstein A. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003; 101 (8): 3126–35.
  • Simonet WS, Lacey DL, Dunstan CR et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89 (2): 309–19.
  • Kong YY, Yoshida H, Sarosi I et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 387 (6717): 315–23.
  • Bucay N, Sarosi I, Dunstan CR et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12 (9): 1260–8.
  • Mizuno A, Amizuka N, Irie K et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998; 247 (3): 610–5.
  • Terpos E, Szydlo R, Apperley JF et al. Soluble receptor activator of nuclear factor kB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003; 102 (3): 1064–9.
  • Standal T, Seidel C, Hjertner O et al. Osteoprotegerin is bound internalised and degraded by multiple myeloma cells. Blood 2002; 100 (8): 3002–7.
  • Dib IE, Gressier M, Salle V, Mentaverri R, Brazier M, Kamel S. Multiple myeloma cells directly stimulate bone resorption in vitro by down-regulating mature osteoclast apoptosis. Leuk Res 2008; 32 (8): 1279–87.
  • Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol 2011; 94: 334–43.
  • Ehrlich LA, Chung HY, Ghobrial I et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 2005; 106 (4): 1407–14.
  • Choi SJ, Cruz JC, Craig F et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000; 96 (2): 671–5.
  • Han J, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 2001; 97 (11): 3349–53.
  • Terpos E, Politou M, Szydlo R, Goldman JM, Apperley JF, Rahemtulla A. Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol 2003; 123: 106–9.
  • Hjorth-Hansen H, Seifert MF, Borset M et al. Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. J Bone Miner Res 1999; 14 (2): 256–63.
  • Gilbert L, He X, Farmer P et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 2000; 141 (11): 3956–64.
  • Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006; 116 (5): 1202–9.
  • Derksen PWB, Tjin E, Meijer HP et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101 (16): 6122–7.
  • Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1 (3): 222–31.
  • Specht K, Haralambieva E, Bink K et al. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood 2004; 104 (4): 1120–6.
  • Edwards CM, Edwards JR, Lwin TS et al. Increasing Wnt signalling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumour burden in bone in vivo. Blood 2008; 111 (5): 2833–42.
  • Tian E, Zhan F, Walker R. The role of the Wnt-signaling antagonist Dkk1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–94.
  • Kaiser M, Mieth M, Liebisch P et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol 2008; 86: 490–4.
  • Silvestris F, Cafforio P Tucci M, Grinello D, Dammacco F. Upregulation of osteoblasts apoptosis by malignant plasma cells a role in myeloma bone disease. Br J Haematol 2003; 122: 39–52.
  • Giuliani N, Colla S, Morandi F et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106 (7): 2472–83.
  • Solly S. Remarks on the pathology of mollities ossium; with cases. Med Chir Trans 1844; 27: 435–98.8.
  • Child JA, Morgan GJ, Davies FE et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348 (19): 1875–83.
  • Alexanian R, Haut A, Khan AU et al. Treatment for multiple myeloma: combination chemotherapy with different melphalan dose regimens. JAMA 1969; 208 (9): 1680–5.
  • San Miguel JF, Creixenti JB, Garcia-Sanz R. Treatment of multiple myeloma. Haematologica 1999; 84: 36–58.
  • Alexanian R, Dimopoulos MA, Delasalle K, Barlogie B. Primary dexamethasone treatment of multiple myeloma. Blood 1992; 80 (4): 887–90.
  • Chauhan D, Hideshima T, Pandey P et al. RAFTK/PYK2-dependent and-independent apoptosis in multiple myeloma cells. Oncogene 1999; 18 (48): 6733–40.
  • Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364 (11): 1046–60.
  • Kumar S, Rajkumar SV. Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur J Cancer 2006; 42 (11): 1612–22.
  • Rajkumar SV, Leong T, Roche PC et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6 (8): 3111–6.
  • D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91 (9): 4082–5.
  • Kenyon KM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997; 64 (6): 971–8.
  • Geitz AH, Handta S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 1996; 31 (2–3): 213–21.
  • Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003; 21 (1): 16–9.
  • Rajkumar SV, Rosinol L, Hussein M et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol 2008; 26 (13): 2171–7.
  • Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide and lenolidomide: mechanism based drug combinations. Leuk Lymphoma 2008; 49 (7): 1238–45.
  • Corral LG, Haslett PA, Muller GW et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163 (1): 380–6.
  • Palumbo A, Hajek R, Delforge M et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 2012; 366 (19): 1759–69.
  • Berenson JR, Hillner BE, Kyle RA et al. American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 2002; 20 (17): 3719–36.
  • Hiroi-Furuya E, Kameda T, Hiura K et al. Etidronate (EHDP) inhibits osteoclastic-bone resorption, promotes apoptosis and disrupts actin rings in isolate-mature osteoclasts. Calcif Tissue Int 1999; 64 (3): 219–23.
  • Terpos E, Sezer O, Croucher P et al. The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann Oncol 2009; 20 (8): 1303–17.
  • Corso A, Ferretti E, Lunghi M et al. Zoledronic acid down-regulates adhesion molecules of bone marrow stromal cells in multiple myeloma: a possible mechanism for its antitumor effect. Cancer 2005; 104 (1): 118–25.
  • Kostenuik PJ. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res 2008; 24 (2): 182–95.
  • Henry DH, Costa L, Goldwasser F et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011; 29 (9): 1125–32.
  • Aghaloo TL, Felsenfeld AL, Tetradis S. Osteonecrosis of the jaw in a patient on denosumab. J Oral Maxillofac Surg 2010; 68 (5): 959–63.
  • Dimopoulos MA, Kastritis E, Anagnostopoulos A et al. Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica 2009; 91 (7): 968–71.
  • Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev 2003; 29 (Suppl 1): 3–9.
  • Roccaro AM, Hideshima T, Raje N et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 2006; 66 (1): 184–91.
  • Voorhees PM, Dees EC, O’Neil B, Orlowski RZ. The proteasome as a target for cancer therapy. Clin Cancer Res 2003; 9 (17): 6316–25.
  • Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ. Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 2005; 56: 46–54.
  • Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001; 20 (33): 4519–27.
  • Giuliani N, Morandi F, Tagliaferri S et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 2007; 110 (1): 334–8.
  • Qiang Y, Hu B, Chen Y et al. Bortezomib induces osteoclast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood 2009; 113 (18): 4319–30.
  • Terpos E, Heath DJ, Rahemtulla A et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006; 135 (5): 688–92.
  • Mateos MV, Hernandez JM, Hernandez MT et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 2006; 108 (7): 2165–72.
  • Usmani SZ, Chiosis G. HSP90 Inhibitors as therapy for multiple myeloma. Clin Lymphoma Myeloma Leuk 2011; 11 (Suppl 1): S77–81.
  • Pearl LH, Prodromou C, Workmann P The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 2008; 410 (3): 439–53.
  • Basso AD, Solit DB, Gabriela C, Giri B, Tsichlis P Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002; 277 (42): 39858–66.
  • Nimmanapalli R, O’Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61 (5): 1799–804.
  • Pandey P Saleh A, Nakazawa A et al. Negative regulation of cytochrome C-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000; 19 (16): 4310–22.
  • Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC. Inhibition of heat shock protein 90 (Hsp90) of a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 2011; 152 (4): 367–79.
  • Ishii T, Seike T, Nakashima T et al. Anti-tumor activity against multiple myeloma by a combination of KW-2478 an Hsp90 inhibitor with bortezomib. Blood Cancer J 2012; 2 (4): e68.
  • Blade J, Esteeve J. Treatment approaches for relapsing and refractory myeloma. Acta Oncol 2000; 39 (7): 843–7.
  • Bellamy WT, Dalton WS, Gleason MC, Grogan TM, Trent JM. Development and characterization of a melphalan-resistant human multiple myeloma cell line. Cancer Res 1991; 51 (3): 995–1002.
  • Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multi-drug resistance-associated proteins. J Natl Cancer Inst 2000; 92 (16): 1295–302.
  • Schwarzenbach H. Expression of MRD1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma. Med Oncol 2002; 19 (2): 87–104.
  • Catley L, Tai Y, Chauhan D, Anderson KC. Perspectives for combination chemotherapy to overcome drug resistant multiple myeloma. Drug Resist Updat 2005; 8 (4): 205–18.
  • Cancer Research UK (www.cancerresearchuk.org/cancer-info/cancerstats/types/myeloma/survival/#1_5_10_yr_survival).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.