185
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Potential route of Th17/Treg cell dynamics in targeting type 1 diabetes and rheumatoid arthritis: an autoimmune disorder perspective

&
Pages 8-15 | Received 20 Jul 2016, Accepted 17 Sep 2016, Published online: 11 Jan 2017

References

  • Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–2357.
  • Abul KA, Murphy MM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–793.
  • Romagnani S. The Th1/Th2 paradigm. Immunol Today. 1997;18:263–266.10.1016/S0167-5699(97)80019-9
  • Coffman RL. Origins of the TH1-TH2 model: a personal perspective. Nat Immunol. 2006;7:539–541.10.1038/ni0606-539
  • Forsthuber T, Yip HC, Lehmann PV. Induction of TH1 and TH2 immunity in neonatal mice. Science 1996;271:1728–1730.10.1126/science.271.5256.1728
  • Singh RR, Hahn BH, Sercarz EE. Neonatal peptide exposure can prime T cells and upon subsequent immunization, induce their immune deviation: implications for antibody vs. T cell-mediated autoimmunity. J Exp Med. 1996;183:1613–1621.
  • Steinman L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nature Med. 2007;13:139–145.10.1038/nm1551
  • Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–748.10.1038/nature01355
  • Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–240.10.1084/jem.20041257
  • Kennedy J, Rossi DL, Zurawski SM, et al. Mouse IL-17: a cytokine preferentially expressed by αβTCR + CD4–CD8–T cells. J Interferon Cytokine Res. 1996;16:611–617.10.1089/jir.1996.16.611
  • Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–1132.10.1038/ni1254
  • Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol. 2007;19:281–286.10.1016/j.coi.2007.04.005
  • Lubberts E, Joosten LA, Oppers B, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol. 2001;167:1004–1013.10.4049/jimmunol.167.2.1004
  • Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–1957.10.1084/jem.20030896
  • Homann D, von Herrath M. Regulatory T cells and type 1 diabetes. Clin Immunol. 2004;112:202–209.10.1016/j.clim.2004.03.020
  • Chatenoud L, Bach JF. Regulatory T cells in the control of autoimmune diabetes: the case of the NOD mouse. Int Rev Immunol. 2005;24:247–267.10.1080/08830180590934994
  • Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–645.10.1016/j.immuni.2009.04.010
  • Bettelli E, Oukka M, Kuchroo VK. TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–350.10.1038/ni0407-345
  • Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Sem Immunol. 2007;19:409–417.10.1016/j.smim.2007.10.011
  • Zhou L, Lopes JE, Chong MM, et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature. 2008;453:236–240.10.1038/nature06878
  • Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infect Immun. 2010;78:32–38.10.1128/IAI.00929-09
  • Ghoreschi K, Laurence A, Yang XP, et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature. 2010;467:967–971.10.1038/nature09447
  • McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nat Immunol. 2007;8:1390–1397.10.1038/ni1539
  • Esplugues E, Huber S, Gagliani N, et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475:514–518.10.1038/nature10228
  • Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–651.10.1038/nature05505
  • Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-β induces development of the TH17 lineage. Nature. 2006;441:231–234.10.1038/nature04754
  • Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect Immune. 2006;74:6092–6099.10.1128/IAI.00621-06
  • Park H, Li Zhaoxia, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–1141.10.1038/ni1261
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.10.1038/nature04753
  • Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-β induces development of the TH17 lineage. Nature. 2006;441:231–234.10.1038/nature04754
  • Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–189.10.1016/j.immuni.2006.01.001
  • Samoilova EB, Horton JL, Hilliard B, et al. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol. 1998;161:6480–6486.
  • Alonzi T, Fattori E, Lazzaro D, et al. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med. 1998;187:461–468.10.1084/jem.187.4.461
  • Sutton C, Brereton C, Keogh B, et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203:1685–1691.10.1084/jem.20060285
  • Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30:576–587.10.1016/j.immuni.2009.02.007
  • Gulen MF, Kang Z, Bulek K, et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity. 2010;32:54–66.10.1016/j.immuni.2009.12.003
  • Veldhoen M, Hocking RJ, Flavell RA, et al. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol. 2006;7:1151–1156.10.1038/ni1391
  • Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26:579–591.10.1016/j.immuni.2007.03.014
  • Gutcher I, Donkor MK, Ma Q, et al. Autocrine transforming growth factor-β1 promotes Invivo Th17 cell differentiation. Immunity. 2011;34:396–408.10.1016/j.immuni.2011.03.005
  • Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat Immunol. 2008;9:650–657.10.1038/ni.1613
  • Manel N, Unutmaz D, Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat Immunol. 2008;9:641–649.10.1038/ni.1610
  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17–producing human T helper cells. Nat Immunol. 2007;8:942–949.10.1038/ni1496
  • Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950–957.10.1038/ni1497
  • Chen Z, Tato CM, Muul L, et al. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 2007;56:2936–2946.10.1002/(ISSN)1529-0131
  • Jager A, Dardalhon V, Sobel R, et al. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol. 2009;183:7169–7177.10.4049/jimmunol.0901906
  • McGeachy MJ. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–324.10.1038/ni.1698
  • Haines CJ, Chen Y, Blumenschein WM, et al. Autoimmune memory T helper 17 Cell function and expansion are dependent on interleukin-23. Nat Rev Rheumatol 2013; 3: 1378–1388.10.1016/j.celrep.2013.03.035
  • Ghoreschi K, Laurence A, Yang XP, et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature. 2010;467:967–971.10.1038/nature09447
  • Iwakura Y, Ishigame H, Saijo S, et al. Functional specialization of interleukin-17 family members. Immunity. 2010;34:149–162.
  • Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995;3:811–821.10.1016/1074-7613(95)90070-5
  • Ishigame H, Kakuta S, Nagai T, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30:108–119.10.1016/j.immuni.2008.11.009
  • Rickel EA, Siegel LA, Yoon BR, et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol. 2008;181:4299–4310.10.4049/jimmunol.181.6.4299
  • Bordon Y. Cytokines: IL-17C joins the family firm. Nat Rev. 2011;11:805–811.
  • Onishi R, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–321.10.1111/imm.2010.129.issue-3
  • Zrioual S, Ecochard R, Tournadre A, et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182:3112–3120.10.4049/jimmunol.0801967
  • Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine. 2008;41:92–104.10.1016/j.cyto.2007.11.013
  • Karlsen JR, Borregaard N, Cowland JB. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-α is controlled by IκB-ζ but neither by C/EBP-beta nor C/EBP-δ. J Biol Chem. 2010;285:14088–14100.10.1074/jbc.M109.017129
  • von Bernuth H, Picard C, Jin Z, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321:691–696.10.1126/science.1158298
  • Stark MA, Huo Y, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity. 2005;22:285–294.10.1016/j.immuni.2005.01.011
  • Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt + CD3 + CD4 − CD8− entheseal resident T cells. Nat Med. 2012;18:1069–1076.10.1038/nm.2817
  • Lernmark A. Type I diabetes. Clin Chem. 1999;45:1331–1338.
  • Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in Type I diabetes and associated disorders. Diabetologia. 2002;45:605–622.10.1007/s00125-002-0781-1
  • Pranzy M, Skrha J, Limanova Z, et al. Screening for associated autoimmunity in type 1 diabetes mellitus with respect to diabetes control. Physiol Res. 2005;54:41–48.
  • Michels AW, Eisenbarth GS. Immunologic endocrine disorders. J Allergy Clin Immunol. 2010;125:S226–S237.10.1016/j.jaci.2009.09.053
  • Singh B, Nikoopour E, Huszarik K, et al. Immunomodulation and regeneration of islet beta cells by cytokines in autoimmune type 1 diabetes. J Interferon Cytokine Res. 2011;31:711–719.10.1089/jir.2011.0025
  • Sadelain MW, Qin HY, Lauzon J, et al. Prevention of type i diabetes in NOD mice by adjuvant immunotherapy. Diabetes. 1990;39:583–589.10.2337/diab.39.5.583
  • d’Annunzio G, Chiara R, Ramona T, et al Autoimmune disorders associated to type 1 diabetes mellitus in children and adolescents, autoimmune disorders. Current Concepts and advances from bedside to mechanistic insights, Intech Publishing Group; 2011. 614. ISBN: 978-953.
  • Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–1957.10.1084/jem.20030896
  • Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–748.10.1038/nature01355
  • Aranami T, Yamamura T. Th17 cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int. 2008;57:115–120.10.2332/allergolint.R-07-159
  • Lubberts E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine. 2008;41:84–91.10.1016/j.cyto.2007.09.014
  • Emamaullee JA, Davis J, Merani S, et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes. 2009;58:1302–1311.10.2337/db08-1113
  • Nikoopour E, Schwartz JA, Huszarik K, et al 2010. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes. J Immunol. 2010; 184: 4779–4788.
  • Jain R, Tartar DM, Gregg RK, et al. Innocuous IFNγ induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med. 2008;205:207–218.10.1084/jem.20071878
  • Honkanen J, Nieminen JK, Gao R, et al. IL-17 immunity in human type 1 diabetes. J Immunol. 2010;185:1959–1967.10.4049/jimmunol.1000788
  • Hwang SY, Kim HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cells. 2005;19:180–184.
  • van Bezooijen RL, van der Wee-Pals L, Papapoulos SW, et al. Interleukin 17 synergises with tumour necrosis factor alpha to induce cartilage destruction in vitro. Ann Rheum Dis. 2002;61:870–876.10.1136/ard.61.10.870
  • LeGrand A, Fermor B, Fink C. Interleukin-1, tumor necrosis factor α, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis Rheum. 2001;44:2078–2083.10.1002/(ISSN)1529-0131
  • Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci. 2003;100:5986–5990.10.1073/pnas.1035999100
  • Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171:6173–6177.10.4049/jimmunol.171.11.6173
  • Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–1957.10.1084/jem.20030896
  • Sandborn WJ. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–1528.10.1056/NEJMoa1203572
  • Patel DD, Lee DM, Kolbinger F, et al. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis. 2013;72:116–iii123.10.1136/annrheumdis-2012-202371
  • Chiricozzi A, Krueger JG. IL-17 targeted therapies for psoriasis. Expert Opin Investig Drugs. 2013;22:993–1005.10.1517/13543784.2013.806483
  • Garber K. Anti-IL-17 mAbs herald new options in psoriasis. Nat Biotechnol. 2012;30:475–477.10.1038/nbt0612-475
  • Makoto M, Yoshnaga I, Shimon S. TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol. 2014;10:543–551.
  • Jia N, Li YY, Song Guo Z, et al. FOXP3+ treg cells and gender bias in autoimmune diseases. Front Immunol. 2015;2:25–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.