100
Views
8
CrossRef citations to date
0
Altmetric
Research Article

PADI4 (rs2240340), PDCD1 (rs10204525), and CTLA4 (231775) gene polymorphisms and polyarticular juvenile idiopathic arthritis

ORCID Icon, , , , , , , & show all
Pages 123-128 | Received 06 Jan 2020, Accepted 08 Feb 2020, Published online: 13 May 2020

References

  • Petty RE, Southwood TR, Manners P, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, edmonton. J.Rheumatol. 2004;31:390–392.
  • Abou El-Soud AM, El-Najjar AR, El-Shahawy EE, et al. Prevalence of juvenile idiopathic arthritis in Sharkia Governorate, Egypt: epidemiological study. Rheumatol Int. 2013;33:2315–2322.
  • Huang L, Yao C, See C. Prevalence of pediatric systemic lupus erythematosus and juvenile chronic arthritis in a Chinese population: a nation-wide prospective population-based study in Taiwan. Clin Exp Rheumatol. 2004;22:776–780.
  • Krause ML, Crowson CS, Michet CJ, et al. Juvenile idiopathic arthritis in Olmsted County, Minnesota, 1960-2013. Arthritis Rheumatol. 2016;68:247–254.
  • Berntson L, Andersson Gare B, Fasth A, et al. Incidence of juvenile idiopathic arthritis in the Nordic countries.. J Rheumatol. 2003;30:2275–2282.
  • Malievskiy VA. Prevalence and incidence of juvenile idiopathic arthritis in children in the republic of Bashkortostan: the epidemiological study. Pediatr Rheumatol. 2011;9:145.
  • Glass DN, Giannini EH. Juvenile rheumatoid arthritis as a complex genetic trait. Arthritis Rheum. 1999;42:2261–2268.
  • Prahalad S, Glass DN. A comprehensive review of the genetics of juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2008;6:11.
  • Yamada R, Suzuki A, Chang X, et al. Peptidylarginine deiminase type 4: identification of a rheumatoid arthritis-susceptible gene. Trends Mol Med. 2003;9:503–508.
  • Goh LL, Yong MY, See WQ, et al. NLRP1, PTPN22 and PADI4 gene polymorphisms and rheumatoid arthritis in ACPA-positive Singaporean Chinese. Rheumatol Int. 2017;(2017):1295–1302.
  • Du Y, Liu X, Guo JP, et al. Association between PADI4 gene polymorphisms and anti-cyclic citrullinated peptide antibody positive rheumatoid arthritis in a large Chinese Han cohort. Clin Exp Rheumatol. 2014;32:377–382.
  • Dai S, Jia R, Zhang X, et al. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol. 2014;290:72–79.
  • Cai L, Zhang C, Wu J, et al. Decreased PD-1expression on circulatingCD4+T cell and PD-L1 expression on myeloid dendritic cell correlate with clinical manifestations in systemic juvenile idiopathic arthritis. Joint Bone Spine. 2019;86:61–68.
  • Luo Q, Ye J, Zeng L, et al. Elevated expression of PD‑1 on T cells correlates with disease activity in rheumatoid arthritis. Mol Med Rep. 2018;17:3297–3305.
  • Xiao W, Zhang Q, Deng XZ, et al. Genetic variations of IL-28B and PD-1 are in association with the susceptibility and outcomes of HCV infection in Southeast China. Infect Genet Evol. 2015;32:89–96.
  • Zhang G, Li N, Zhang P, et al. PD-1 mRNA expression is associated with clinical and viral profile and PD1 3ʹ-untranslated region polymorphism in patients with chronic HBV infection. Immunol Lett. 2014;162:212–216.
  • Buchbinder E, Hodi FS. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest. 2015;125:3377–3383.
  • Anjos S, Nguyen A, Ounissi-Benkalha H, et al. A common autoimmunity predisposing signal peptide variant of the cytotoxic T lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. J Biol Chem. 2002;277:46478–46486.
  • Elshazli R, Settin A, Salama A. Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) +49 A>G gene polymorphism in Egyptian cases with rheumatoid arthritis. Gene. 2015;558:103–107.
  • Suppiah V, O’Doherty C, Heggarty S, et al. The CTLA4+49A/G and CT60 polymorphisms and chronic inflammatory arthropathies in Northern Ireland. Exp Mol Pathol. 2006;80:141–146.
  • Consolaro A, Giancane G, Schiappapietra B, et al. Clinical outcome measures in juvenile idiopathic arthritis. Pediatr Rheumatol. 2016;14:23.
  • Consolaro A, Ruperto N, Bazso A, et al. Paediatric rheumatology international trials organisation. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009;61:658–666.
  • Dempster H, Porepa M, Young N, et al. The clinical meaning of functional outcome scores in children with juvenile arthritis. Arthritis Rheum. 2001;244:1768–1774.
  • Hisa K, Yanagimachi MD, Naruto T, et al. PADI4 and the HLA-DRB1 shared epitope in juvenile idiopathic arthritis. PLoS One. 2017. DOI:10.1371/journal.pone.0171961
  • Lee YH, Rho YH, Choi SJ, et al. PADI4 polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis. Rheumatol Int. 2007;27:827–833.
  • Takata Y, Inoue H, Sato A, et al. Replication of reported genetic associations of PADI4, FCRL3, SLC22A4 and RUNX1 genes with rheumatoid arthritis: results of an independent Japanese population and evidence from meta-analysis of East Asian studies. J Hum Genet. 2008;53:163–173.
  • Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 2003;34:395–402.
  • Lu C, Xu K, Guo H, et al. The relationship of PADI4_94 polymorphisms with the morbidity of rheumatoid arthritis in Caucasian and Asian populations: a meta-analysis and system review. Clin Rheumatol. 2018;37:289–296.
  • Tejeda C, Broadaway AK, Ombrello MJ, et al. Case-control association study of autoimmunity associated variants in PDCD1 and juvenile idiopathic arthritis. Curr Rheumatol Rev. 2017;13:219–223.
  • Qian C, Guo H, Chen X, et al. Association of PD-1 and PD-L1 genetic polymorphyisms with Type 1 diabetes susceptibility. J Diabetes Res. 2018;11:1614683.
  • Gu Y, Xiao L, Gu W, et al. Rs2227982 and rs2227981 in PDCD1 gene are functional SNPs associated with T1D risk in East Asian. Acta Diabetol. 2018;55:813–819.
  • Bautista-Caro MB, Arroyo-Villa I, Castillo-Gallego C. et al., Decreased frequencies of circulating follicular helper T cell counterparts and plasmablasts in ankylosing spondylitis patients Naïve for TNF blockers. PLoS One. 2014;Sep(9;9):e107086. eCollection 2014.
  • Prahalad S, JF B, Whiting A, et al. Lack of association of functional CTLA4 polymorphisms with juvenile idiopathic arthritis. Arthritis Rheum. 2008;58:2147–2152.
  • Schubert K, von Bonnsdorf H, Burke M, et al. A comprehensive candidate gene study on bronchial asthma and juvenile idiopathic arthritis. Dis Markers. 2006;22:127–132.
  • Farago B, Kisfali P, Magyari L, et al. Cytotoxic T lymphocyte-associated Antigen +49G variant confers risk for Anti-CCP and rheumatoid factor-positive type of rheumatoid arthritis only in combination with CT60G Allele. Autoimmune Dis. 2010;285974. DOI:10.4061/2010/285974.
  • Sontichai W, Vilaiyuk S. The correlation between the childhood health assessment questionnaire and disease activity in juvenile idiopathic arthritis. Musculoskeletal Care. 2018;16:339–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.