64
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Long non-coding RNA ANRIL polymorphisms in papillary thyroid cancer and its severity

, , , &
Pages 58-62 | Received 07 May 2020, Accepted 24 Sep 2020, Published online: 20 Jan 2021

References

  • Lim H, Devesa SS, Sosa JA, et al. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA. 2017;317:1338–1348.
  • Mao Y, Xing M. Recent incidences and differential trends of thyroid cancer in the USA. Endocr Relat Cancer. 2016;23:313–322.
  • Schneider AB, Sarne DH. Long-term risks for thyroid cancer and other neoplasms after exposure to radiation. Nat Rev Endocrinol. 2005;1:82.
  • Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:54.
  • George N, Agarwal A, Kumari N, et al. Mutational profile of papillary thyroid carcinoma in an endemic goiter region of North India. Indian J Endocrinol Metab. 2018;22:505.
  • Xing M. Gene methylation in thyroid tumorigenesis. Endocrinology. 2007;148:948–953.
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489:101.
  • Mattick JS, Makunin IV. Small regulatory RNAs in mammals. Hum Mol Genet. 2005;14:R121–R32.
  • Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012;3:219.
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155.
  • Meseure D, Drak Alsibai K, Nicolas A, et al. Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int. 2015;2015:1–14.
  • Li Z, Yu X, Shen J. ANRIL: a pivotal tumor suppressor long non-coding RNA in human cancers. Tumor Biol. 2016;37:5657–5661.
  • Pasmant E, Laurendeau I, Héron D, et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 2007;67:3963–3969.
  • Chen W-M, Qi F-Z, Xia R, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol. 2015;8:57.
  • Nie F-Q, Sun M, Yang J-S, et al. Long noncoding RNA ANRIL promotes non–small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 2015;14:268–277.
  • Zhu H, Li X, Song Y, et al. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway. Biochem Biophys Res Commun. 2015;467:223–228.
  • Gao S, Zhao Z-Y, Wu R, et al. Prognostic value of long noncoding RNAs in gastric cancer: a meta-analysis. Onco Targets Ther. 2018;11:4877.
  • Jing W, Li X, Peng R, et al. The diagnostic and prognostic significance of long noncoding RNAs expression in thyroid cancer: a systematic review and meta-analysis. Pathol Res Pract. 2018;214:327–334.
  • Zhu H, Lv Z, An C, et al. Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci Rep. 2016;6:31969.
  • Jendrzejewski J, He H, Radomska HS, et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Nat Acad Sci. 2012;109:8646–8651.
  • Jendrzejewski J, Thomas A, Liyanarachchi S, et al. PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab. 2015;100:E1370–E7.
  • Maruei‐Milan R, Heidari Z, Salimi S. Role of MDM2 309T> G (rs2279744) and I/D (rs3730485) polymorphisms and haplotypes in risk of papillary thyroid carcinoma, tumor stage, tumor size, and early onset of tumor: A case control study. J Cell Physiol. 2019 Aug;234(8):12934–12940.
  • Cao X-L, Yin R-X, Huang F, et al. Chromosome 9p21 and ABCA1 genetic variants and their interactions on coronary heart disease and ischemic stroke in a Chinese Han population. Int J Mol Sci. 2016;17:586.
  • Esparragón FR, Companioni O, Bello MG, et al. Replication of relevant SNPs associated with cardiovascular disease susceptibility obtained from GWAs in a case-control study in a Canarian population. Dis Markers. 2012;32:231–239.
  • Lian Y, Cai Z, Gong H, et al. HOTTIP: a critical oncogenic long non-coding RNA in human cancers. Mol Biosyst. 2016;12:3247–3253.
  • Li Z, Shen J, Chan MT, et al. TUG 1: a pivotal oncogenic long non‐coding RNA of human cancers. Cell Prolif. 2016;49:471–475.
  • Ma C, Shi X, Zhu Q, et al. The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers. Tumor Biol. 2016;37:1437–1444.
  • Chen J, Liu S, Hu X. Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov. 2018;4. DOI:10.1038/s41420-018-0051-8
  • Wang J, Du S, Wang J, et al. The prognostic value of abnormally expressed lncRNAs in colorectal cancer: A meta-analysis. PloS One. 2017;12:e0179670.
  • Huang F, Zhang Q, Chen W, et al. Long noncoding RNA cancer susceptibility candidate 2 suppresses papillary thyroid carcinoma growth by inactivating the AKT/ERK1/2 signaling pathway. J Cell Biochem. 2019 Jun;120(6):10380–10390.
  • Chen C, Zhou L, Wang H, et al. Long noncoding RNA CNALPTC1 promotes cell proliferation and migration of papillary thyroid cancer via sponging miR-30 family. Am J Cancer Res. 2018;8:192.
  • Zhao -J-J, Hao S, Wang -L-L, et al. Long non-coding RNA ANRIL promotes the invasion and metastasis of thyroid cancer cells through TGF-β/Smad signaling pathway. Oncotarget. 2016;7:57903.
  • Liu F, Liu S, Chen L, et al. Up-regulation of the long non-coding RNA ANRIL indicates poor prognosis and promotes tumorigenesis in oral squamous cell carcinoma. Int J Clin Exp Pathol. 2017;10:6900–6905.
  • Cheng S, Huang T, Li P, et al. Long non‑coding RNA ANRIL promotes the proliferation, migration and invasion of human osteosarcoma cells. Exp Ther Med. 2017;14:5121–5125.
  • Chen D, Zhang Z, Mao C, et al. ANRIL inhibits p15INK4b through the TGFβ1 signaling pathway in human esophageal squamous cell carcinoma. Cell Immunol. 2014;289:91–96.
  • Heidari Z, Mohammadpour‐Gharehbagh A, Eskandari M, et al. Genetic polymorphisms of miRNA let7a‐2 and pri‐mir‐34b/c are associated with an increased risk of papillary thyroid carcinoma and clinical/pathological features. J Cell Biochem. 2019;120:8640–8647.
  • Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis. Biosci Rep. 2018;38:BSR20180365.
  • Taheri M, Pouresmaeili F, Omrani MD, et al. Association of ANRIL gene polymorphisms with prostate cancer and benign prostatic hyperplasia in an Iranian population. Biomark Med. 2017;11:413–422.
  • Timofeeva MN, Hung RJ, Rafnar T, et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet. 2012;21:4980–4995.
  • Huang Y, Jin H, Yang G. A meta-analysis on associations of CDKN2B-AS variants with atherosclerotic cardio-cerebral vascular diseases. Life Sci. 2018. DOI:10.1016/j.lfs.2018.12.047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.