3,428
Views
119
CrossRef citations to date
0
Altmetric
Research Article

Structural analysis of the GLUT1 facilitative glucose transporter

Pages 183-193 | Published online: 09 Jul 2009

References

  • Alvarez, J., Lee, D. C., Baldwin, S. A. and Chapman, D., 1987, Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucos e transporter. Journal of Biologica l Chemistry, 262, 3502 ± 3509.
  • Asano, T., Katagiri, H., Takata, K., Lin, J. L., Ishihara, H., Inukai, K., Tsukuda, K., Kikuchi, M., Hirano, H., Yazaki, Y., 1991, The role of N-glycosylation of GLUT1 for glucose transport activity. Journal of Biologica l Chemistry, 266, 24632 ± 24636.
  • Asano, T., Shibasaki, Y., Kasuga, M., Kanazawa, Y., Takaku, F., Akanuma, Y. and Oka, Y., 1988, Cloning of a rabbit brain glucos e transporter cDNA and alteration of glucos e transporter mRNA during tissue development. Biochemistry and Biophysics Re- s earch Communications, 154, 1204 ± 1211.
  • Baldwin, J. M., Gorga, J. C. and Lienhard, G. E., 1981, The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution. Journal of Biological Chemistry, 256, 3685 ± 3689.
  • Baldwin, S. A., 1993, Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta, 1154, 17 ± 49.
  • Barnett, J. E. G., Holman, G. D. and Munday, K. A., 1973, Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochemistry Journal, 131, 211 ± 221.
  • Basketter, D. A. and Widdas, W. F., 1978, Asymmetry of the hexos e transfer system in human erythrocytes. Experiments with non- transportable inhibitors. Journal of Physiology (London), 278, 389 ± 401.
  • Birnbaum, M. J., Haspel, H. C. and Ros en, O. M., 1986, Cloning and characterization of a cDNA encoding the rat brain glucos e- transporter protein. Proceedings of the National Academy of Sciences (USA), 83, 5784 ± 5788.
  • Burant, C. F. and Bell, G. I., 1992, Mammalian facilitativ e glucos e transporters: evidence for simila r substrate recognition sites in functionally monomeric proteins. Biochemistry, 31, 10414 ± 10420. Cairns, M. T., Alvarez, J., Panico, M., Gibbs, A. F., Morris, H. R., Chapman, D. and Baldwin, S. A., 1987, Investigation of the structure and function of the human erythrocyte glucos e trans- porter by proteolytic dissection. Biochimica et Biophysica Acta, 905, 295 ± 310.
  • Carayannopoulos, M. O., Chi, M. M., Cui, Y., Pingsterhaus, J. M., McKnight, R. A., Mueckler, M., Devaskar, S. U. and Moley, K. H., 2000, GLUT8 is a glucose transporter responsible for insulin- stimulated glucos e uptake in the blastocyst. Proceedings of the National Academy of Sciences (USA), 97, 7313 ± 7318.
  • Carruthers, A., 1990, Facilitated diffusion of glucose [Review] [290 refs]. Physiology Review, 70, 1135 ± 1176.
  • Chin, J. J., Jung, E. K., Chen, V. and Jung, C. Y., 1987, Structura l basis of human erythrocyte glucos e transporter function in proteoliposome vesicles: circular dichrois m measurements. Pro- ceedings of the National Academy of Sciences (USA), 84, 4113 ± 4116.
  • Chin, J. J., Jung, E. K. and Jung, C. Y., 1986, Structural basis of human erythrocyte glucose transporter function in reconstituted vesicles. Journal of Biologica l Chemistry, 261, 7101 ± 7104.
  • Clark, A. E. and Holman, G. D., 1990, Exofacial photolabelling of the human erythrocyte glucos e transporter with an azitrifluoroethy l- benzoyl-substituted bismannos e. Biochemistry Journal, 269, 615 ± 622.
  • Cope, D. L., Holman, G. D., Baldwin, S. A. and Wolstenholme, A. J., 1994, Domain assembly of the GLUT1 glucos e transporter. Biochemistry Journal, 300, 291 ± 294.
  • Davies, A., Ciardelli, T. L., Lienhard, G. E., Boyle, J. M., Whetton, A.D. and Baldwin, S. A., 1990, Site-specific antibodies as probes of the topology and function of the human erythrocyte glucos e transporter. Biochemistry Journal, 266, 799 ± 808.
  • Deziel, M., Pegg, W., Mack, E., Rothstein, A. and Klip, A., 1984, Labelling of the human erythrocyte glucose transporter with 3H- labelled cytochalasin B occurs via protein photoactivation. Biochimica et Biophysica Acta, 772, 403 ± 406.
  • Doege, H., Bocianski, A., Joost, H. G. and Schurmann, A., 2000a, Activity and genomic organization of human glucos e transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitator s predominantly express ed in brain and leucocytes. Biochemistry Journal, 350, 771 ± 776.
  • Doege, H., Schurmann, A., Bocianski, A. and Joost, H. G., 2000b, Glucos e transporters (GLUT) 8,9,10: characterization of 3 novel members of the family of sugar transport facilitators. Naunyn. Schmiedebergs Arch. Pharmakol., 362, R36.
  • Doege, H., Schurmann, A., Ohnimus, H., Mons er, V., Holman, G. D. and Joost, H. G., 1998, Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucos e transporters (GLUT) are involved in the conformational alterations during the transport process. Biochemistry Journal, 329, 289 ± 293.
  • Fischbarg, J., Cheung, M., Czegledy, F., Li, J., Iserovich, P., Kuang, K., Hubbard, J., Garner, M., Rosen, O. M., Golde, D. W., 1993, Evidence that facilitativ e glucose transporters may fold as beta- barrels. Proceedings of the National Academy of Sciences (USA), 90, 11658 ± 11662.
  • Fischbarg, J., Kuang, K. Y., Vera, J. C., Arant, S., Silverstein, S. C., Loike, J. and Rosen, O. M., 1990, Glucose transporters s erve as water channels. Proceedings of the National Academy of Sciences (USA), 87, 3244 ± 3247.
  • Frillingos, S., Sahin-Toth, M., Wu, J. H. and Kaback, H. R., 1998, Cys-scanning mutagenesis: a novel approach to structure-func- tion relationshops in polytopic membrane proteins. FASEB Journal, 12, 1281 ± 1299.
  • Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I. and Seino, S., 1989, Cloning and characterizatio n of the major insulin-responsive glucos e transporter express ed in human skeleta l muscle and other insulin-responsive tissues. Journal of Biological Chemistry, 264, 7776 ± 7779.
  • Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R. L., Fukushima, Y., Byers, M. G., Shows, T. B. and Bell, G. I., 1988, Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proceedings of the National Academy of Sciences (USA), 85, 5434 ± 5438.
  • Garcia, J. C., Strube, M., Leingang, K., Keller, K. and Mueckler, M. M., 1992, Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (GLUT1) glucos e transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. Journal of Biological Chemistry, 267, 7770 ± 7776.
  • Gorga, F. R. and Lienhard, G. E., 1981, Equilibria and kinetics of ligand binding to the human erythrocyte glucos e transporter. Evidence for an alternating conformation model for transport. Biochemistry, 20, 5108 ± 5113.
  • Gould, G. W. and Holman, G. D., 1993, The glucos e tramsporter family: structure, function and tissue-specific expression. Bio- chemistry Journal, 295, 329 ± 341.
  • Hamill, S., Cloherty, E. K. and Carruthers, A., 1999, The human erythrocyte sugar transporter pres ents two sugar import sites. Biochemistry, 38, 16974 ± 16983.
  • Hashiramoto, M., Kadowaki, T., Clark, A. E., Muraoka, A., Momomura, K., Sakura, H., Tobe, K., Akanuma, Y., Yazaki, Y., Holman, G. D., 1992, Site-directe d mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacia l ligand binding. Journal of Biological Chemistry, 267, 17502 ± 17507.
  • Hebert, D. N. and Carruthers, A., 1991, Cholate-solubilized erythrocyte glucose transporters exist as a mixture of homodimers and homotetramers. Biochemistry, 30, 4654 ± 4658.
  • Hebert, D. N. and Carruthers, A., 1992, Glucose transporter oligomeric structure determines transporter function. Journal of Biological Chemistry, 267, 23829 ± 23838.
  • Helgerson, A. L. and Carruthers, A., 1987, Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar-binding sites per carrier. Journal of Biological Chemistry, 262, 5464 ± 5475.
  • Holman, G. D. and Rees, W. D., 1987, Photolabelling of the hexos e transporter at external and internal sites: fragmentation patterns and evidence for a conformational change. Biochimica et Biophysica Acta, 897, 395 ± 405.
  • Hresko, R. C., Krus e, M., Strube, M. and Mueckler, M., 1994, Topology of the Glut 1 glucos e transporter deduced from glycosylation scanning mutagenesis. Journal of Biologica l Chem- istry, 269, 20482 ± 20488.
  • Hruz, P. W. and Mueckler, M. M., 1999, Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucos e transporter. Journal of Biological Chemistry, 274, 36176 ± 36180. Hruz, P. W. and Mueckler, M. M., 2000, Cysteine-scanning mutagenesis of transmembrane s egment 11 of the GLUT1 facilitativ e glucose transporter. Biochemistry 39, 9367 ± 9372.
  • Ibberson, M., Uldry, M. and Thorens, B., 2000, GLUTX1, a novel mammalian glucos e transporter express ed in the centra l nervous system and insulin-sensitiv e tissues. Journal of Biological Chem- istry, 275, 4607 ± 4612.
  • Inukai, K., Asano, T., Katagiri, H., Anai, M., Funaki, M., Ishihara, H., Tsukuda, K., Kikuchi, M., Yazaki, Y. and Oka, Y., 1994, Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1 glucose transporter. Biochemistry Journal, 302, 355 ± 361.
  • Jacobs, D. B., Berenski, C. J., Spangler, R. A. and Jung, C. Y., 1987, Radiation inactivation target siz e of rat adipocyte glucos e transporters in the plasma membrane and intracellula r pools. Journal of Biological Chemistry, 262, 8084 ± 8087.
  • Jarvis, S. M., Ellory, J. C. and Young, J. D., 1986, Radiation inactivation of the human erythrocyte nucleoside and glucose transporters. Biochimica et Biophysica Acta, 855, 312 ± 315.
  • Jung, E. K., Chin, J. J. and Jung, C. Y., 1986, Structura l basis of human erythrocyte glucos e transporter function in reconstituted system. Hydrogen exchange. Journal of Biologica l Chemistry, 261, 9155 ± 9160.
  • Kaback, H. R., Voss, J. and Wu, J., 1997, Helix packing in polytopic membrane proteins: the lactos e permease of. Current Opinions in Structure Biology, 7, 537 ± 542.
  • Kaestner, K. H., Christy, R. J., McLenithan, J. C., Braiterman, L. T., Cornelius, P., Pekala, P. H. and Lane, M. D., 1989, Sequence, tissue distribution, and differentia l expression of mRNA for a putative insulin-responsive glucos e transporter in mous e 3T3-L1 adipocytes. Proceedings of the National Academy of Sciences (USA), 86, 3150 ± 3154.
  • Kayano, T., Burant, C. F., Fukumoto, H., Gould, G. W., Fan, Y. S.,
  • Eddy, R. L., Byers, M. G., Shows, T. B., Seino, S. and Bell, G. I., 1990, Human facilitativ e glucos e transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) express ed in small intestine, kidney, muscle, and adipose tissue and an unusual glucos e transporter ps eudogene- like s equence (GLUT6). Journal of Biologica l Chemistry, 265, 13276 ± 13282.
  • Kayano, T., Fukumoto, H., Eddy, R. L. Y. F., Byers, M. G., Shows, T. N. and Bell, G. I., 1988, Evidence for a family of glucose transporter-like proteins. Journal of Biological Chemistry, 263, 15245 ± 15248.
  • Koumanov, F., Yang, J., Jones, A. E., Hatanaka, Y. and Holman, G. D., 1998, Cell-surface biotinyla tion of GLUT4 using bis-mannos e photolabels. Biochemistry Journal, 330, 1209 ± 1215.
  • Lachaal, M., Rampal, A. L., Lee, W., Shi, Y. and Jung, C. Y., 1996, GLUT1 transmembrane glucose pathway. Affinity labeling with a transportable D-glucose diazirine. Journal of Biologica l Chemistry, 271, 5225 ± 5230.
  • Lowe, A. G., 1989, The kinetics and thermodynamics of glucose transport in human erythrocytes: indications for the molecular mechanism of transport. Biochemistry Society Transactions, 17, 435 ± 438.
  • Lowe, A. G. and Walmsley, A. R., 1989, The kinetics and thermodynamics of glucos e transport in human erythrocytes. In Red Blood Cell Membranes, Vol. 11, P. Agre and J. C. Parker, eds (New York: Marcel Dekker, Inc), pp. 597 ± 634.
  • Lundahl, P., Mascher, E., Andersson, L., Englund, A. K., Greijer, E ., Kameyama, K. and Takagi, T., 1991, Active and monomeric human red cell glucose transporter after high performance molecular-sieve chromatography in the pres ence of octyl gluco- side and phosphatidylserine or phosphatidylcholine. Biochimica et Biophysica Acta, 1067, 177 ± 186.
  • Maiden, M. C., Davis, E. O., Baldwin, S. A., Moore, D. C. and Henderson, P. J., 1987, Mammalian and bacterial sugar transport proteins are homologous. Nature, 325, 641 ± 643.
  • Makepeace, C. and Mueckler, M., 1999, Transmembrane segment 5 of the Glut1 glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway. Journal of Biological Chemistry, 274, 10927 ± 10935.
  • Marger, M. D. and Saier, M. J. R., 1993, A major superfamily of transmembrane facilitator s that catalys e uniport, symport and antiport. Trends in Biochemical Science, 18, 13 ± 20.
  • McVie-Wylie, A. J., Lamson, D. R. and Chen, Y. T., 2001, Molecular cloning of a novel member of the GLUT family of transporters, SLC2A10 (GLUT10), localize d on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics, 72, 113 ± 117.
  • Mori, H., Hashiramoto, M., Clark, A. E., Yang, J., Muraoka, A., Tamori, Y., Kasuga, M. and Holman, G. D., 1994, Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation. Journal of Biological Chemistry, 269, 11578 ± 11583.
  • Mueckler, M. and Makepeace, C., 1997, Identification of an amino acid residue that lies between the exofacial vesibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway. Journal of Biological Chemistry, 272, 30141 ± 30146.
  • Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M. and Blench, I., 1985, Sequence and structure of a human glucos e transporter. Science, 229, 941 ± 945.
  • Mueckler, M., Kruse, M., Strube, M., Riggs, A. C. and Chiu, K. C.,1994a, A mutation in the Glut2 glucos e transporter gene of a diabetic patient abolishes transport activity. Journal of Biological Chemistry, 269, 17765 ± 17767.
  • Mueckler, M., Weng, W. and Krus e, M., 1994b, Glutamine 161 of Glut1 glucose transporter is critica l for transport activity and exocacial ligand binding. Journal of Biologica l Chemistry, 269, 20533 ± 20538.
  • Muraoka, A., Hashiramoto, M., Clark, A. E., Edwards, L. C., Sakura, H., Kadowaki, T., Holman, G. D. and Kasuga, M., 1995, Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity. Biochemistry Journal, 311, 699 ± 704.
  • Oka, Y., Asano, T., Shibasaki, Y., Lin, J. L., Tsukuda, K., Katagiri, H., Akanuma, Y. and Takaku, F., 1990, C-terminal truncated glucos e transporter is locked into an inward-facing form without transport activity. Nature, 345, 550 ± 553.
  • Olsowski, A., Monden, I., Krause, G. and Keller, K., 2000, Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments. Biochemistry, 39, 2469 ± 2474.
  • Pawagi, A. B. and Deber, C. M., 1987, D-glucos e binding increases s econdary structure of human erythrocyte monosaccharide trans- port protein. Biochemistry and Biophysics Research Communica- tions, 145, 1087 ± 1091.
  • Pessino, A., Hebert, D. N., Woon, C. W., Harrison, S. A., Clancy, B. M., Buxton, J. M., Carruthers, A. and Czech, M. P., 1991, Evidence that functiona l erythrocyte-type glucos e transporters are oligomers. Journal of Biological Chemistry, 266, 20213 ± 20217.
  • Phay, J. E., Hussain, H. B. and Moley, J. F., 2000, Cloning and expression analysis of a novel member of the facilitativ e glucos e transporter family, SLC2A9 (GLUT9). Genomics, 66, 217 ± 220.
  • Preston, R. A. and Baldwin, S. A., 1993, GLUT 1: identifica tion of exofacial lysine-residues. Biochemistry Society Transactions, 21, 309 ± 312.
  • Saravolac, E. G., Holman, G. D., Gould, G. W. and Baldwin, S. A., 1996, The us e of biotinyla tion in the detection and purification of affinity labelled Glut-1. Biochemistry Society Transactions, 24, 115S.
  • Sato, M. and Mueckler, M., 1999, A cons erved amino acid motif (R-X-G-R-R) in the Glut1 glucos e transporter is an important determinant of membrane topology. Journal of Biological Chem- istry, 274, 24721 ± 24725.
  • Schurmann, A., Doege, H., Ohnimus, H., Mons er, V., Buchs, A. and Joost, H. G., 1997, Role of cons erved arginine and glutamate residues on the cytosolic surface of glucos e transporters for transporter function. Biochemistry, 36, 12897 ± 12902.
  • Schurmann, A., Keller, K., Monden, I., Brown, F. M., Wandel, S., Shanahan, M. F. and Joost, H. G., 1993, Glucos e transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylami- do-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucos e transporter GLUT1: dissociation of the binding domains of forskolin and glucos e. Biochemistry Journal, 290, 497 ± 501.
  • Seatter, M. J., De la Rue, S. A., Porter, L. M. and Gould, G. W., 1998, QLS motif in transmembrane helix VII of the glucos e transporter family interacts with the C-1 position of D-glucos e and is involved in substrate s election at the exofacia l binding site. Biochemistry, 37, 1322 ± 1326.
  • Sergeant, S. and Kim, H. D., 1985, Inhibition of 3-O-methylglucos e transport in human erythrocytes by forskolin. Journal of Biological Chemistry, 260, 14677 ± 14682.
  • Shanahan, M. F., 1982, Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucos e transporter. Journal of Biologica l Chemistry, 257, 7290 ± 7293.
  • Tamori, Y., Hashiramoto, M., Clark, A. E., Mori, H., Muraoka, A., Kadowaki, T., Holman, G. D. and Kasuga, M., 1994, Substitution at Pro385 of GLUT1 perturbs the glucose transport function by reducing conformational flexibility. Journal of Biological Chemistry, 269, 2982 ± 2986.
  • Wadzinski, B. E ., Shanahan, M. F., Seamon, K. B. and Ruoho, A. E., 1990, Localization of the forskolin photolabelling site within the monosaccharide transporter of human erythrocytes. Biochemistry Journal, 272, 151 ± 158.
  • Wandel, S., Schurmann, A., Becker, W., Summers, S. A., Shanahan,M. F. and Joost, H. G., 1994, Substitution of cons erved tyrosine residues in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the glucos e transporter GLUT4. FEBS Letters, 348, 114 ± 118.
  • Wang, D., Kranz-Eble, P. and De Vivo, D. C., 2000, Mutational analysis of GLUT1 (SLC2A1) in glut-1 deficiency syndrome. Human Mutations, 16, 224 ± 231.
  • Wellner, M., Monden, I. and Keller, K., 1992, The differential role of Cys-421 and Cys-429 of the Glut1 glucos e transporter in transport inhibition by p-chloromercuribenz enesulfonic acid (pCMBS) or cytochalasin B (CB). FEBS Letters, 309, 293 ± 296.
  • Wellner, M., Monden, I. and Keller, K., 1994, The role of cysteine residues in glucos e-transporter-GLUT1-mediated transport and transport inhibition. Biochemistry Journal, 299, 813 ± 817.
  • Wellner, M., Monden, I., Mueckler, M. M. and Keller, K., 1995, Functional cons equences of proline mutations in the putative transmembrane s egments 6 and 10 of the glucos e transporter GLUT1. European Journal of Biochemistry, 227, 454 ± 458.
  • Widdas, W. F., 1952, Inability of difusion to account for placenta l glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. Journal of Physiology (London), 118, 23 ± 39.
  • Zeng, H., Parthasarathy, R., Rampal, A. L. and Jung, C. Y., 1996, Propos ed structure of putative glucose channel in Glut1 facilitativ e glucose transporter. Biophysics Journal, 70, 14 ± 21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.